1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
# coding=utf-8
# ------------------------------------
# Copyright (c) Microsoft.
# Licensed under the MIT License.
# ------------------------------------
"""
FILE: sample_text_custom_multi_label_classification_async.py
DESCRIPTION:
This sample demonstrates how to run a **custom multi-label classification** action over text (async LRO).
USAGE:
python sample_text_custom_multi_label_classification_async.py
REQUIRED ENV VARS (for AAD / DefaultAzureCredential):
AZURE_TEXT_ENDPOINT
AZURE_CLIENT_ID
AZURE_TENANT_ID
AZURE_CLIENT_SECRET
NOTE:
If you want to use AzureKeyCredential instead, set:
- AZURE_TEXT_ENDPOINT
- AZURE_TEXT_KEY
OPTIONAL ENV VARS:
PROJECT_NAME # defaults to "<project-name>"
DEPLOYMENT_NAME # defaults to "<deployment-name>"
"""
# [START text_custom_multi_label_classification_async]
import os
import asyncio
from azure.identity.aio import DefaultAzureCredential
from azure.ai.textanalytics.aio import TextAnalysisClient
from azure.ai.textanalytics.models import (
MultiLanguageTextInput,
MultiLanguageInput,
CustomMultiLabelClassificationActionContent,
CustomMultiLabelClassificationOperationAction,
CustomMultiLabelClassificationOperationResult,
)
async def sample_text_custom_multi_label_classification_async():
# get settings
endpoint = os.environ["AZURE_TEXT_ENDPOINT"]
project_name = os.environ.get("PROJECT_NAME", "<project-name>")
deployment_name = os.environ.get("DEPLOYMENT_NAME", "<deployment-name>")
credential = DefaultAzureCredential()
async with TextAnalysisClient(endpoint, credential=credential) as client:
# Build input
text_a = (
"I need a reservation for an indoor restaurant in China. Please don't stop the music. "
"Play music and add it to my playlist."
)
text_input = MultiLanguageTextInput(
multi_language_inputs=[MultiLanguageInput(id="A", text=text_a, language="en")]
)
action = CustomMultiLabelClassificationOperationAction(
name="Custom Multi-Label Classification",
action_content=CustomMultiLabelClassificationActionContent(
project_name=project_name,
deployment_name=deployment_name,
),
)
# Start long-running operation (async)
poller = await client.begin_analyze_text_job(
text_input=text_input,
actions=[action],
)
# Operation metadata (pre-final)
print(f"Operation ID: {poller.details.get('operation_id')}")
# Wait for completion and get AsyncItemPaged of TextActions
paged_actions = await poller.result()
# Final-state metadata
d = poller.details
print(f"Job ID: {d.get('job_id')}")
print(f"Status: {d.get('status')}")
print(f"Created: {d.get('created_date_time')}")
print(f"Last Updated: {d.get('last_updated_date_time')}")
if d.get("expiration_date_time"):
print(f"Expires: {d.get('expiration_date_time')}")
if d.get("display_name"):
print(f"Display Name: {d.get('display_name')}")
if d.get("errors"):
print("\nErrors:")
for err in d["errors"]:
print(f" Code: {err.code} - {err.message}")
# Iterate results (async pageable)
async for actions_page in paged_actions:
# Page-level counts if available
print(
f"Completed: {actions_page.completed}, "
f"In Progress: {actions_page.in_progress}, "
f"Failed: {actions_page.failed}, "
f"Total: {actions_page.total}"
)
# Items are the individual operation results
for op_result in actions_page.items_property or []:
if isinstance(op_result, CustomMultiLabelClassificationOperationResult):
print(f"\nAction Name: {op_result.task_name}")
print(f"Action Status: {op_result.status}")
print(f"Kind: {op_result.kind}")
results = op_result.results
for doc in results.documents or []:
print(f"\nDocument ID: {doc.id}")
print("Predicted Labels:")
for cls_item in doc.class_property or []:
print(f" Category: {cls_item.category}")
print(f" Confidence score: {cls_item.confidence_score}")
else:
try:
print(
f"\n[Other action] name={op_result.task_name}, "
f"status={op_result.status}, kind={op_result.kind}"
)
except Exception:
print("\n[Other action present]")
# [END text_custom_multi_label_classification_async]
async def main():
await sample_text_custom_multi_label_classification_async()
if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
|