File: sample_recognize_custom_entities_async.py

package info (click to toggle)
python-azure 20251118%2Bgit-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 783,356 kB
  • sloc: python: 6,474,533; ansic: 804; javascript: 287; sh: 205; makefile: 198; xml: 109
file content (133 lines) | stat: -rw-r--r-- 4,902 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# coding=utf-8
# ------------------------------------
# Copyright (c) Microsoft.
# Licensed under the MIT License.
# ------------------------------------

"""
FILE: sample_text_custom_entities_async.py

DESCRIPTION:
    This sample demonstrates how to run a **custom entity recognition** action over text (async LRO).

USAGE:
    python sample_text_custom_entities_async.py

REQUIRED ENV VARS (for AAD / DefaultAzureCredential):
    AZURE_TEXT_ENDPOINT
    AZURE_CLIENT_ID
    AZURE_TENANT_ID
    AZURE_CLIENT_SECRET
NOTE:
    If you want to use AzureKeyCredential instead, set:
      - AZURE_TEXT_ENDPOINT
      - AZURE_TEXT_KEY
OPTIONAL ENV VARS:
    PROJECT_NAME        # defaults to "<project-name>"
    DEPLOYMENT_NAME     # defaults to "<deployment-name>"
"""

# [START text_custom_entities_async]
import os
import asyncio

from azure.identity.aio import DefaultAzureCredential
from azure.ai.textanalytics.aio import TextAnalysisClient
from azure.ai.textanalytics.models import (
    MultiLanguageTextInput,
    MultiLanguageInput,
    AnalyzeTextOperationAction,
    CustomEntitiesActionContent,
    CustomEntitiesLROTask,
    CustomEntityRecognitionOperationResult,
)


async def sample_text_custom_entities_async():
    # settings
    endpoint = os.environ["AZURE_TEXT_ENDPOINT"]
    project_name = os.environ.get("PROJECT_NAME", "<project-name>")
    deployment_name = os.environ.get("DEPLOYMENT_NAME", "<deployment-name>")

    credential = DefaultAzureCredential()

    async with TextAnalysisClient(endpoint, credential=credential) as client:
        # input
        text_a = (
            "We love this trail and make the trip every year. The views are breathtaking and well worth the hike! "
            "Yesterday was foggy though, so we missed the spectacular views. We tried again today and it was amazing."
        )
        text_input = MultiLanguageTextInput(
            multi_language_inputs=[MultiLanguageInput(id="A", text=text_a, language="en")]
        )

        action_content = CustomEntitiesActionContent(
            project_name=project_name,
            deployment_name=deployment_name,
        )
        actions: list[AnalyzeTextOperationAction] = [
            CustomEntitiesLROTask(name="Custom Entities", parameters=action_content)
        ]

        # LRO (async)
        poller = await client.begin_analyze_text_job(text_input=text_input, actions=actions)

        # pre-final metadata
        print(f"Operation ID: {poller.details.get('operation_id')}")

        # wait for completion and get AsyncItemPaged[TextActions]
        paged_actions = await poller.result()

        # final metadata
        d = poller.details
        print(f"Job ID: {d.get('job_id')}")
        print(f"Status: {d.get('status')}")
        print(f"Created: {d.get('created_date_time')}")
        print(f"Last Updated: {d.get('last_updated_date_time')}")
        if d.get("expiration_date_time"):
            print(f"Expires: {d.get('expiration_date_time')}")
        if d.get("display_name"):
            print(f"Display Name: {d.get('display_name')}")
        if d.get("errors"):
            print("\nErrors:")
            for err in d["errors"]:
                print(f"  Code: {err.code} - {err.message}")

        # iterate results (async pageable)
        async for actions_page in paged_actions:
            print(
                f"Completed: {actions_page.completed}, In Progress: {actions_page.in_progress}, "
                f"Failed: {actions_page.failed}, Total: {actions_page.total}"
            )
            for op_result in actions_page.items_property or []:
                if isinstance(op_result, CustomEntityRecognitionOperationResult):
                    print(f"\nAction Name: {op_result.task_name}")
                    print(f"Action Status: {op_result.status}")
                    print(f"Kind: {op_result.kind}")
                    for doc in op_result.results.documents or []:
                        print(f"Document ID: {doc.id}")
                        for entity in doc.entities or []:
                            print(f"  Text: {entity.text}")
                            print(f"  Category: {entity.category}")
                            print(f"  Offset: {entity.offset}, Length: {entity.length}")
                            print(f"  Confidence score: {entity.confidence_score}\n")
                else:
                    try:
                        print(
                            f"\n[Other action] name={op_result.task_name}, "
                            f"status={op_result.status}, kind={op_result.kind}"
                        )
                    except Exception:
                        print("\n[Other action present]")


# [END text_custom_entities_async]


async def main():
    await sample_text_custom_entities_async()


if __name__ == "__main__":
    loop = asyncio.get_event_loop()
    loop.run_until_complete(main())