1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
|
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------
import pytest
import pandas as pd
import os
import pathlib
from typing import Dict, Any
from azure.ai.evaluation._evaluate._evaluate_aoai import (
_generate_data_source_config,
_get_data_source,
_build_schema_tree_from_paths,
WRAPPER_KEY,
)
def _get_file(name):
"""Get the file from the unittest data folder."""
data_path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data")
return os.path.join(data_path, name)
@pytest.fixture
def flat_test_data():
"""Fixture for flat structure test data."""
return pd.DataFrame(
[
{
"query": "What is the capital of France?",
"response": "Paris is the capital of France.",
"ground_truth": "Paris",
},
{"query": "What is 2+2?", "response": "The answer is 4.", "ground_truth": "4"},
{
"query": "Who wrote Hamlet?",
"response": "William Shakespeare wrote Hamlet.",
"ground_truth": "Shakespeare",
},
]
)
@pytest.fixture
def nested_test_data():
"""Fixture for nested structure test data."""
return pd.DataFrame(
[
{
"item.query": "What security policies exist?",
"item.context.company.policy.security.passwords.rotation_days": "90",
"item.context.company.policy.security.network.vpn.required": "true",
"item.response": "Password rotation is required every 90 days.",
"item.ground_truth": "Security policies include password rotation.",
},
{
"item.query": "What are the database settings?",
"item.context.company.infrastructure.database.host": "db.example.com",
"item.context.company.infrastructure.database.port": "5432",
"item.response": "The database is PostgreSQL.",
"item.ground_truth": "PostgreSQL database",
},
]
)
@pytest.fixture
def flat_test_data_file():
"""Fixture for flat test data file path."""
return _get_file("flat_test_data.jsonl")
@pytest.fixture
def nested_test_data_file():
"""Fixture for nested test data file path."""
return _get_file("nested_test_data.jsonl")
@pytest.fixture
def wrapped_flat_test_data_file():
"""Fixture for wrapped flat test data file path."""
return _get_file("wrapped_flat_test_data.jsonl")
@pytest.mark.unittest
class TestBuildSchemaTreeFromPaths:
"""Test suite for the _build_schema_tree_from_paths helper function."""
def test_single_level_paths(self):
"""Test building schema with single-level paths."""
paths = ["query", "response", "ground_truth"]
schema = _build_schema_tree_from_paths(paths, force_leaf_type="string")
assert schema["type"] == "object"
assert "properties" in schema
assert "required" in schema
assert set(schema["properties"].keys()) == {"query", "response", "ground_truth"}
assert all(prop["type"] == "string" for prop in schema["properties"].values())
assert set(schema["required"]) == {"query", "response", "ground_truth"}
def test_nested_paths(self):
"""Test building schema with nested paths."""
paths = [
"context.company.policy.security.passwords.rotation_days",
"context.company.policy.security.network.vpn.required",
"query",
]
schema = _build_schema_tree_from_paths(paths, force_leaf_type="string")
assert schema["type"] == "object"
assert "context" in schema["properties"]
assert schema["properties"]["context"]["type"] == "object"
# Navigate nested structure
company = schema["properties"]["context"]["properties"]["company"]
assert company["type"] == "object"
policy = company["properties"]["policy"]
assert policy["type"] == "object"
security = policy["properties"]["security"]
assert security["type"] == "object"
# Check leaf nodes
passwords = security["properties"]["passwords"]
assert passwords["properties"]["rotation_days"]["type"] == "string"
network = security["properties"]["network"]
assert network["properties"]["vpn"]["properties"]["required"]["type"] == "string"
# Check required arrays exist at each level
assert "required" in schema
assert "required" in schema["properties"]["context"]
def test_empty_paths(self):
"""Test building schema with empty paths list."""
paths = []
schema = _build_schema_tree_from_paths(paths, force_leaf_type="object")
assert schema["type"] == "object"
def test_mixed_depth_paths(self):
"""Test building schema with paths of different depths."""
paths = ["simple_field", "nested.field.deep", "nested.field.shallow", "another.path"]
schema = _build_schema_tree_from_paths(paths, force_leaf_type="string")
assert "simple_field" in schema["properties"]
assert schema["properties"]["simple_field"]["type"] == "string"
assert "nested" in schema["properties"]
nested = schema["properties"]["nested"]
assert nested["type"] == "object"
assert "field" in nested["properties"]
@pytest.mark.unittest
class TestGenerateDataSourceConfig:
"""Test suite for the _generate_data_source_config function."""
def test_flat_column_mapping(self, flat_test_data):
"""Test generating data source config with flat column mappings."""
column_mapping = {
"query": "${data.query}",
"response": "${data.response}",
"ground_truth": "${data.ground_truth}",
}
config = _generate_data_source_config(flat_test_data, column_mapping)
assert config["type"] == "custom"
assert "item_schema" in config
assert config["item_schema"]["type"] == "object"
properties = config["item_schema"]["properties"]
assert "query" in properties
assert "response" in properties
assert "ground_truth" in properties
# All should be strings in flat mode
assert properties["query"]["type"] == "string"
assert properties["response"]["type"] == "string"
assert properties["ground_truth"]["type"] == "string"
def test_nested_column_mapping_with_wrapper(self, nested_test_data):
"""Test generating data source config with nested paths under wrapper."""
column_mapping = {
"query": "${data.item.query}",
"passwords_rotation": "${data.item.context.company.policy.security.passwords.rotation_days}",
"vpn_required": "${data.item.context.company.policy.security.network.vpn.required}",
"response": "${data.item.response}",
}
config = _generate_data_source_config(nested_test_data, column_mapping)
assert config["type"] == "custom"
assert "item_schema" in config
schema = config["item_schema"]
# Should be nested object since paths contain dots
assert schema["type"] == "object"
# The wrapper should be stripped, so we should see inner structure
assert "query" in schema["properties"]
assert "response" in schema["properties"]
assert "context" in schema["properties"]
# Verify nested structure
context = schema["properties"]["context"]
assert context["type"] == "object"
assert "company" in context["properties"]
def test_nested_column_mapping_without_wrapper(self, nested_test_data):
"""Test generating data source config with nested paths not using standard wrapper."""
column_mapping = {
"query": "${data.custom.query}",
"field": "${data.custom.nested.field}",
}
config = _generate_data_source_config(nested_test_data, column_mapping)
assert config["type"] == "custom"
assert "item_schema" in config
schema = config["item_schema"]
# Should be nested
assert schema["type"] == "object"
# Without wrapper stripping, should see 'custom' at top level
assert "custom" in schema["properties"]
def test_mixed_data_and_run_outputs(self, flat_test_data):
"""Test column mapping with both data and run.outputs references."""
column_mapping = {
"query": "${data.query}",
"response": "${run.outputs.response}",
"ground_truth": "${data.ground_truth}",
}
config = _generate_data_source_config(flat_test_data, column_mapping)
# Only data.* paths should be in schema
properties = config["item_schema"]["properties"]
assert "query" in properties
assert "ground_truth" in properties
# run.outputs.response shouldn't create a schema property directly
def test_empty_column_mapping(self, flat_test_data):
"""Test with empty column mapping."""
column_mapping = {}
config = _generate_data_source_config(flat_test_data, column_mapping)
# Should return flat schema with no properties
assert config["type"] == "custom"
assert config["item_schema"]["type"] == "object"
assert config["item_schema"]["properties"] == {}
def test_no_data_references(self, flat_test_data):
"""Test column mapping with no ${data.*} references."""
column_mapping = {"response": "${run.outputs.response}", "result": "${run.outputs.result}"}
config = _generate_data_source_config(flat_test_data, column_mapping)
# Should return flat schema since no data paths referenced
assert config["type"] == "custom"
assert "response" in config["item_schema"]["properties"]
assert "result" in config["item_schema"]["properties"]
def test_single_nested_path(self, flat_test_data):
"""Test with a single nested path to ensure nested mode activates."""
column_mapping = {"nested_field": "${data.item.context.field}"}
config = _generate_data_source_config(flat_test_data, column_mapping)
# Should generate nested schema
assert config["type"] == "custom"
schema = config["item_schema"]
assert schema["type"] == "object"
# After wrapper stripping, should see context
assert "context" in schema["properties"]
@pytest.mark.unittest
class TestGetDataSource:
"""Test suite for the _get_data_source function."""
def test_flat_data_source_generation(self, flat_test_data):
"""Test generating data source from flat data."""
column_mapping = {
"query": "${data.query}",
"response": "${data.response}",
"ground_truth": "${data.ground_truth}",
}
data_source = _get_data_source(flat_test_data, column_mapping)
assert data_source["type"] == "jsonl"
assert "source" in data_source
assert data_source["source"]["type"] == "file_content"
content = data_source["source"]["content"]
assert len(content) == 3
# Each item should be wrapped
for item in content:
assert WRAPPER_KEY in item
assert "query" in item[WRAPPER_KEY]
assert "response" in item[WRAPPER_KEY]
assert "ground_truth" in item[WRAPPER_KEY]
def test_nested_data_source_generation(self, nested_test_data):
"""Test generating data source from nested data."""
column_mapping = {
"query": "${data.item.query}",
"rotation_days": "${data.item.context.company.policy.security.passwords.rotation_days}",
"vpn_required": "${data.item.context.company.policy.security.network.vpn.required}",
"response": "${data.item.response}",
}
data_source = _get_data_source(nested_test_data, column_mapping)
assert data_source["type"] == "jsonl"
content = data_source["source"]["content"]
assert len(content) == 2
# Verify nested structure is built correctly
first_item = content[0][WRAPPER_KEY]
assert "query" in first_item
assert "context" in first_item
assert "company" in first_item["context"]
assert "policy" in first_item["context"]["company"]
# Check leaf values
passwords = first_item["context"]["company"]["policy"]["security"]["passwords"]
assert passwords["rotation_days"] == "90"
vpn = first_item["context"]["company"]["policy"]["security"]["network"]["vpn"]
assert vpn["required"] == "true"
def test_data_source_with_run_outputs(self, flat_test_data):
"""Test data source generation with run.outputs mappings."""
# Add __outputs column to simulate target function output
flat_test_data["__outputs.model_response"] = [
"Generated response 1",
"Generated response 2",
"Generated response 3",
]
column_mapping = {
"query": "${data.query}",
"response": "${run.outputs.model_response}",
"ground_truth": "${data.ground_truth}",
}
data_source = _get_data_source(flat_test_data, column_mapping)
content = data_source["source"]["content"]
# run.outputs should be mapped with just leaf name
for i, item in enumerate(content):
assert "model_response" in item[WRAPPER_KEY]
assert item[WRAPPER_KEY]["model_response"] == f"Generated response {i+1}"
def test_data_source_with_unmapped_columns(self, flat_test_data):
"""Test that unmapped columns are included in output."""
# Add extra column not in mapping
flat_test_data["extra_field"] = ["extra1", "extra2", "extra3"]
column_mapping = {"query": "${data.query}", "response": "${data.response}"}
data_source = _get_data_source(flat_test_data, column_mapping)
content = data_source["source"]["content"]
# Unmapped columns should appear directly in item
for i, item in enumerate(content):
assert "extra_field" in item[WRAPPER_KEY]
assert "ground_truth" in item[WRAPPER_KEY] # Also unmapped
def test_data_source_with_none_values(self, flat_test_data):
"""Test data source generation handles None values correctly."""
flat_test_data.loc[1, "response"] = None
column_mapping = {
"query": "${data.query}",
"response": "${data.response}",
"ground_truth": "${data.ground_truth}",
}
data_source = _get_data_source(flat_test_data, column_mapping)
content = data_source["source"]["content"]
# None should be converted to empty string
assert content[1][WRAPPER_KEY]["response"] == ""
def test_data_source_with_numeric_values(self, flat_test_data):
"""Test data source generation converts numeric values to strings."""
flat_test_data["score"] = [95, 87, 92]
flat_test_data["confidence"] = [0.95, 0.87, 0.92]
column_mapping = {"query": "${data.query}", "score": "${data.score}", "confidence": "${data.confidence}"}
data_source = _get_data_source(flat_test_data, column_mapping)
content = data_source["source"]["content"]
# Numeric values should be converted to strings
assert content[0][WRAPPER_KEY]["score"] == "95"
assert content[0][WRAPPER_KEY]["confidence"] == "0.95"
assert isinstance(content[0][WRAPPER_KEY]["score"], str)
assert isinstance(content[0][WRAPPER_KEY]["confidence"], str)
def test_empty_dataframe(self):
"""Test data source generation with empty dataframe."""
empty_df = pd.DataFrame()
column_mapping = {"query": "${data.query}"}
data_source = _get_data_source(empty_df, column_mapping)
assert data_source["type"] == "jsonl"
assert len(data_source["source"]["content"]) == 0
def test_complex_nested_structure(self):
"""Test with complex multi-level nested structure."""
df = pd.DataFrame(
[
{
"item.a.b.c.d": "deep_value",
"item.a.b.x": "mid_value",
"item.a.y": "shallow_value",
"item.z": "top_value",
}
]
)
column_mapping = {
"deep": "${data.item.a.b.c.d}",
"mid": "${data.item.a.b.x}",
"shallow": "${data.item.a.y}",
"top": "${data.item.z}",
}
data_source = _get_data_source(df, column_mapping)
content = data_source["source"]["content"]
item = content[0][WRAPPER_KEY]
# Verify nested structure
assert item["a"]["b"]["c"]["d"] == "deep_value"
assert item["a"]["b"]["x"] == "mid_value"
assert item["a"]["y"] == "shallow_value"
assert item["z"] == "top_value"
def test_data_source_preserves_row_order(self, flat_test_data):
"""Test that data source preserves the order of rows."""
column_mapping = {"query": "${data.query}", "response": "${data.response}"}
data_source = _get_data_source(flat_test_data, column_mapping)
content = data_source["source"]["content"]
# Verify order matches input
assert content[0][WRAPPER_KEY]["query"] == flat_test_data.iloc[0]["query"]
assert content[1][WRAPPER_KEY]["query"] == flat_test_data.iloc[1]["query"]
assert content[2][WRAPPER_KEY]["query"] == flat_test_data.iloc[2]["query"]
@pytest.mark.unittest
class TestDataSourceConfigIntegration:
"""Integration tests for schema and data source generation working together."""
def test_flat_schema_and_data_alignment(self, flat_test_data):
"""Test that schema and data are aligned for flat structure."""
column_mapping = {
"query": "${data.query}",
"response": "${data.response}",
"ground_truth": "${data.ground_truth}",
}
config = _generate_data_source_config(flat_test_data, column_mapping)
data_source = _get_data_source(flat_test_data, column_mapping)
schema_props = config["item_schema"]["properties"]
data_item = data_source["source"]["content"][0][WRAPPER_KEY]
# All schema properties should exist in data
for prop_name in schema_props.keys():
assert prop_name in data_item
def test_nested_schema_and_data_alignment(self, nested_test_data):
"""Test that schema and data are aligned for nested structure."""
column_mapping = {
"query": "${data.item.query}",
"rotation_days": "${data.item.context.company.policy.security.passwords.rotation_days}",
"response": "${data.item.response}",
}
config = _generate_data_source_config(nested_test_data, column_mapping)
data_source = _get_data_source(nested_test_data, column_mapping)
# Both should handle nested structure consistently
assert config["item_schema"]["type"] == "object"
assert WRAPPER_KEY in data_source["source"]["content"][0]
# Verify nested paths exist in data
item = data_source["source"]["content"][0][WRAPPER_KEY]
assert "query" in item
assert "context" in item
assert "company" in item["context"]
|