1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
|
# Azure Cognitive Services Health Insights Radiology Insights client library for Python
[Health Insights][health_insights] is an Azure Applied AI Service built with the Azure Cognitive Services Framework, that leverages multiple Cognitive Services, Healthcare API services and other Azure resources.
[Radiology Insights][radiology_insights_docs] is a model that aims to provide quality checks as feedback on errors and inconsistencies (mismatches) and ensures critical findings are identified and communicated using the full context of the report. Follow-up recommendations and clinical findings with measurements (sizes) documented by the radiologist are also identified.
## Getting started
### Prequisites
- [Python 3.8+][python] is required to use this package.
- You need an [Azure subscription][azure_sub] to use this package.
- An existing Cognitive Services Health Insights instance.
For more information about creating the resource or how to get the location and sku information see [here][cognitive_resource_cli].
### Installing the module
```bash
python -m pip install azure-healthinsights-radiologyinsights
```
This table shows the relationship between SDK versions and supported API versions of the service:
| SDK version | Supported API version of service |
|-------------|----------------------------------|
| 1.0.0 | 2024-04-01 |
| 1.1.0 | 2024-10-01 |
### Authenticate the client
#### Get the endpoint
You can find the endpoint for your Health Insights service resource using the [Azure Portal][azure_portal] or [Azure CLI][azure_cli]
```bash
# Get the endpoint for the Health Insights service resource
az cognitiveservices account show --name "resource-name" --resource-group "resource-group-name" --query "properties.endpoint"
```
#### Create a RadiologyInsightsClient with DefaultAzureCredential
DefaultAzureCredential provides different ways to authenticate with the service. Documentation about this can be found [here][azure_credential]
<!-- SNIPPET:sample_credentials.credentials-->
```Python
import os
from azure.identity import DefaultAzureCredential
from azure.healthinsights.radiologyinsights import RadiologyInsightsClient
credential = DefaultAzureCredential()
ENDPOINT = os.environ["AZURE_HEALTH_INSIGHTS_ENDPOINT"]
radiology_insights_client = RadiologyInsightsClient(endpoint=ENDPOINT, credential=credential)
```
<!-- SNIPPET:sample_credentials.credentials-->
### Long-Running Operations
Long-running operations are operations which consist of an initial request sent to the service to start an operation,
followed by polling the service at intervals to determine whether the operation has completed or failed, and if it has
succeeded, to get the result.
Methods that support healthcare analysis, custom text analysis, or multiple analyses are modeled as long-running operations.
The client exposes a `begin_<method-name>` method that returns a poller object. Callers should wait
for the operation to complete by calling `result()` on the poller object returned from the `begin_<method-name>` method.
Sample code snippets are provided to illustrate using long-running operations [below](#examples "Examples").
## Key concepts
Once you've initialized a 'RadiologyInsightsClient', you can use it to analyse document text by displaying inferences found within the text.
* Age Mismatch
* Laterality Discrepancy
* Sex Mismatch
* Complete Order Discrepancy
* Limited Order Discrepancy
* Finding
* Critical Result
* Follow-up Recommendation
* Communication
* Radiology Procedure
* Guidance
* Quality Measure
* Scoring and Assessment
Radiology Insights currently supports one document from one patient. Please take a look [here][inferences] for more detailed information about the inferences this service produces.
## Examples
For each inference samples are available that show how to retrieve the information either in a synchronous (block until operation is complete, slower) or in an asynchronous way (non-blocking, faster).
For an example how to create a client, a request and get the result see the example in the [sample folder][sample_folder].
* [Age Mismatch](#get-age-mismatch-inference-information)
* [Complete Order Discrepancy](#get-complete-order-discrepancy-inference-information)
* [Critical Result](#get-critical-result-inference-information)
* [Finding](#get-finding-inference-information)
* [Follow-up Communication](#get-follow-up-communication-information)
* [Follow-up Recommendation](#get-follow-up-recommendation-information)
* [Laterality Discrepancy](#get-laterality-discrepancy-information)
* [Limited Order Discrepancy](#get-limited-order-discrepancy-information)
* [Radiology Procedure](#get-radiology-procedure-information)
* [Sex Mismatch](#get-sex-mismatch-information)
* [Guidance](#get-guidance-information)
* [Quality Measure](#get-quality-measure-inference-information)
* [Scoring and Assessment](#get-scoring-and-assessment-inference-information)
### Running the samples
1. Open a terminal window and `cd` to the directory that the samples are saved in.
2. Set the environment variables specified in the sample file you wish to run.
3. Run the sample. Example: `python <sample_name>.py`
### Create a request for the RadiologyInsights service
<!-- SNIPPET:sample_age_mismatch_inference_async.create_radiology_insights_request-->
```Python
doc_content1 = """CLINICAL HISTORY:
20-year-old female presenting with abdominal pain. Surgical history significant for appendectomy.
COMPARISON:
Right upper quadrant sonographic performed 1 day prior.
TECHNIQUE:
Transabdominal grayscale pelvic sonography with duplex color Doppler and spectral waveform analysis of the ovaries.
FINDINGS:
The uterus is unremarkable given the transabdominal technique with endometrial echo complex within physiologic normal limits. The ovaries are symmetric in size, measuring 2.5 x 1.2 x 3.0 cm and the left measuring 2.8 x 1.5 x 1.9 cm.\n On duplex imaging, Doppler signal is symmetric.
IMPRESSION:
1. Normal pelvic sonography. Findings of testicular torsion.
A new US pelvis within the next 6 months is recommended.
These results have been discussed with Dr. Jones at 3 PM on November 5 2020."""
# Create ordered procedure
procedure_coding = models.Coding(
system="Http://hl7.org/fhir/ValueSet/cpt-all",
code="USPELVIS",
display="US PELVIS COMPLETE",
)
procedure_code = models.CodeableConcept(coding=[procedure_coding])
ordered_procedure = models.OrderedProcedure(description="US PELVIS COMPLETE", code=procedure_code)
# Create encounter
start = datetime.datetime(2021, 8, 28, 0, 0, 0, 0)
end = datetime.datetime(2021, 8, 28, 0, 0, 0, 0)
encounter = models.PatientEncounter(
id="encounter2",
class_property=models.EncounterClass.IN_PATIENT,
period=models.TimePeriod(start=start, end=end),
)
# Create patient info
birth_date = datetime.date(1959, 11, 11)
patient_info = models.PatientDetails(sex=models.PatientSex.FEMALE, birth_date=birth_date)
# Create author
author = models.DocumentAuthor(id="author2", full_name="authorName2")
create_date_time = datetime.datetime(2024, 2, 19, 0, 0, 0, 0, tzinfo=datetime.timezone.utc)
patient_document1 = models.PatientDocument(
type=models.DocumentType.NOTE,
clinical_type=models.ClinicalDocumentType.RADIOLOGY_REPORT,
id="doc2",
content=models.DocumentContent(source_type=models.DocumentContentSourceType.INLINE, value=doc_content1),
created_at=create_date_time,
specialty_type=models.SpecialtyType.RADIOLOGY,
administrative_metadata=models.DocumentAdministrativeMetadata(
ordered_procedures=[ordered_procedure], encounter_id="encounter2"
),
authors=[author],
language="en",
)
# Construct patient
patient1 = models.PatientRecord(
id="patient_id2",
details=patient_info,
encounters=[encounter],
patient_documents=[patient_document1],
)
# Create a configuration
configuration = models.RadiologyInsightsModelConfiguration(verbose=False, include_evidence=True, locale="en-US")
# Construct the request with the patient and configuration
patient_data = models.RadiologyInsightsJob(job_data=models.RadiologyInsightsData(patients=[patient1], configuration=configuration))
```
<!-- SNIPPET:sample_age_mismatch_inference_async.create_radiology_insights_request-->
### Get Age Mismatch Inference information
<!-- SNIPPET:sample_age_mismatch_inference_async.display_age_mismatch-->
```Python
for patient_result in radiology_insights_result.patient_results:
for ri_inference in patient_result.inferences:
if ri_inference.kind == models.RadiologyInsightsInferenceType.AGE_MISMATCH:
print(f"Age Mismatch Inference found")
```
<!-- SNIPPET:sample_age_mismatch_inference_async.display_age_mismatch-->
### Get Complete Order Discrepancy Inference information
<!-- SNIPPET:sample_complete_order_discrepancy_inference_async.display_complete_order_discrepancy-->
```Python
for patient_result in radiology_insights_result.patient_results:
for ri_inference in patient_result.inferences:
if ri_inference.kind == models.RadiologyInsightsInferenceType.COMPLETE_ORDER_DISCREPANCY:
print(f"Complete Order Discrepancy Inference found")
```
<!-- SNIPPET:sample_complete_order_discrepancy_inference_async.display_complete_order_discrepancy-->
### Get Critical Result Inference information
<!-- SNIPPET:sample_critical_result_inference_async.display_critical_result-->
```Python
for patient_result in radiology_insights_result.patient_results:
for ri_inference in patient_result.inferences:
if ri_inference.kind == models.RadiologyInsightsInferenceType.CRITICAL_RESULT:
critical_result = ri_inference.result
print(
f"Critical Result Inference found: {critical_result.description}")
```
<!-- SNIPPET:sample_critical_result_inference_async.display_critical_result-->
### Get Finding Inference information
<!-- SNIPPET:sample_finding_inference_async.display_finding-->
```Python
for patient_result in radiology_insights_result.patient_results:
counter = 0
for ri_inference in patient_result.inferences:
if ri_inference.kind == models.RadiologyInsightsInferenceType.FINDING:
counter += 1
print(f"Finding Inference found")
```
<!-- SNIPPET:sample_finding_inference_async.display_finding-->
### Get Follow-up Communication information
<!-- SNIPPET:sample_followup_communication_inference_async.display_followup_communication-->
```Python
for patient_result in radiology_insights_result.patient_results:
for ri_inference in patient_result.inferences:
if ri_inference.kind == models.RadiologyInsightsInferenceType.FOLLOWUP_COMMUNICATION:
print(f"Follow-up Communication Inference found")
```
<!-- SNIPPET:sample_followup_communication_inference_async.display_followup_communication-->
### Get Follow-up Recommendation information
<!-- SNIPPET:sample_followup_recommendation_inference_async.display_followup_recommendation-->
```Python
for patient_result in radiology_insights_result.patient_results:
for ri_inference in patient_result.inferences:
if ri_inference.kind == models.RadiologyInsightsInferenceType.FOLLOWUP_RECOMMENDATION:
print(f"Follow-up Recommendation Inference found")
```
<!-- SNIPPET:sample_followup_recommendation_inference_async.display_followup_recommendation-->
### Get Laterality Discrepancy information
<!-- SNIPPET:sample_laterality_discrepancy_inference_async.display_laterality_discrepancy-->
```Python
for patient_result in radiology_insights_result.patient_results:
for ri_inference in patient_result.inferences:
if ri_inference.kind == models.RadiologyInsightsInferenceType.LATERALITY_DISCREPANCY:
print(f"Laterality Discrepancy Inference found")
```
<!-- SNIPPET:sample_laterality_discrepancy_inference_async.display_laterality_discrepancy-->
### Get Limited Order Discrepancy information
<!-- SNIPPET:sample_limited_order_discrepancy_inference_async.display_limited_order_discrepancy-->
```Python
for patient_result in radiology_insights_result.patient_results:
for ri_inference in patient_result.inferences:
if ri_inference.kind == models.RadiologyInsightsInferenceType.LIMITED_ORDER_DISCREPANCY:
print(f"Limited Order Discrepancy Inference found")
```
<!-- SNIPPET:sample_limited_order_discrepancy_inference_async.display_limited_order_discrepancy-->
### Get Radiology Procedure information
<!-- SNIPPET:sample_radiology_procedure_inference_async.display_radiology_procedure-->
```Python
for patient_result in radiology_insights_result.patient_results:
for ri_inference in patient_result.inferences:
if ri_inference.kind == models.RadiologyInsightsInferenceType.RADIOLOGY_PROCEDURE:
print(f"Radiology Procedure Inference found")
```
<!-- SNIPPET:sample_radiology_procedure_inference_async.display_radiology_procedure-->
### Get Sex Mismatch information
<!-- SNIPPET:sample_sex_mismatch_inference_async.display_sex_mismatch-->
```Python
for patient_result in radiology_insights_result.patient_results:
for ri_inference in patient_result.inferences:
if ri_inference.kind == models.RadiologyInsightsInferenceType.SEX_MISMATCH:
print(f"Sex Mismatch Inference found")
```
<!-- SNIPPET:sample_sex_mismatch_inference_async.display_sex_mismatch-->
### Get Guidance information
<!-- SNIPPET:sample_guidance_inference_async.display_guidance-->
```Python
for patient_result in radiology_insights_result.patient_results:
for ri_inference in patient_result.inferences:
if ri_inference.kind == models.RadiologyInsightsInferenceType.GUIDANCE:
guidance = ri_inference
print(f"Guidance Inference found:")
if guidance.identifier and guidance.identifier.coding:
for code in guidance.identifier.coding:
print(f"Identifier: {code.display}")
for info in guidance.missing_guidance_information:
print(f"Missing Guidance: {info}")
for info in guidance.present_guidance_information:
print(f"Present Guidance: {info.present_guidance_item}")
for value in info.present_guidance_values:
print(f"Value: {value}")
print(f"Ranking: {guidance.ranking.value}")
```
<!-- SNIPPET:sample_guidance_inference_async.display_guidance-->
### Get Quality Measure Inference information
<!-- SNIPPET:sample_quality_measure_inference_async.display_quality_measure-->
```Python
for patient_result in radiology_insights_result.patient_results:
counter = 0
for ri_inference in patient_result.inferences:
if ri_inference.kind == models.RadiologyInsightsInferenceType.QUALITY_MEASURE:
counter += 1
print(f"Quality Measure {counter} Inference found")
# Print Quality Measure Denominator
if ri_inference.quality_measure_denominator:
print(f"Quality Measure Denominator: {ri_inference.quality_measure_denominator}")
# Print Compliance Type
if ri_inference.compliance_type:
print(f"Compliance Type: {ri_inference.compliance_type}")
# Print Quality Criteria
if ri_inference.quality_criteria:
for criteria in ri_inference.quality_criteria:
print(f"Quality Criterium: {criteria}")
```
<!-- SNIPPET:sample_quality_measure_inference_async.display_quality_measure-->
### Get Scoring and Assessment Inference information
<!-- SNIPPET:sample_scoring_and_assessment_inference_async.display_scoring_and_assessment-->
```Python
for patient_result in radiology_insights_result.patient_results:
counter = 0
for ri_inference in patient_result.inferences:
if ri_inference.kind == models.RadiologyInsightsInferenceType.SCORING_AND_ASSESSMENT:
counter += 1
print(f"Scoring and assessment {counter} Inference found")
# Print Category
if ri_inference.category:
print(f"Category : {ri_inference.category}")
# Print Compliance Type
if ri_inference.category_description:
print(f"Category Description: {ri_inference.category_description}")
# Print Quality Criteria
if ri_inference.single_value:
print(f"Single Value: {ri_inference.single_value}")
# Print Range Value
if ri_inference.range_value:
display_range_value(ri_inference.range_value)
```
<!-- SNIPPET:sample_scoring_and_assessment_inference_async.display_scoring_and_assessment-->
For detailed conceptual information of this and other inferences please read more [here][inferences].
## Troubleshooting
### General
Health Insights Radiology Insights client library will raise exceptions defined in [Azure Core][azure_core].
### Logging
This library uses the standard [logging](https://docs.python.org/3/library/logging.html) library for logging.
Basic information about HTTP sessions (URLs, headers, etc.) is logged at `INFO` level.
Detailed `DEBUG` level logging, including request/response bodies and **unredacted**
headers, can be enabled on the client or per-operation with the `logging_enable` keyword argument.
See full SDK logging documentation with examples [here](https://learn.microsoft.com/azure/developer/python/sdk/azure-sdk-logging).
## Next steps
## Contributing
This project welcomes contributions and suggestions. Most contributions require
you to agree to a Contributor License Agreement (CLA) declaring that you have
the right to, and actually do, grant us the rights to use your contribution.
For details, visit https://cla.microsoft.com.
When you submit a pull request, a CLA-bot will automatically determine whether
you need to provide a CLA and decorate the PR appropriately (e.g., label,
comment). Simply follow the instructions provided by the bot. You will only
need to do this once across all repos using our CLA.
This project has adopted the
[Microsoft Open Source Code of Conduct][code_of_conduct]. For more information,
see the Code of Conduct FAQ or contact <opencode@microsoft.com> with any
additional questions or comments.
<!-- LINKS -->
[azure_cli]: https://docs.microsoft.com/cli/azure
[azure_portal]: https://portal.azure.com
[azure_core]: https://azuresdkdocs.z19.web.core.windows.net/python/azure-core/latest/azure.core.html#module-azure.core.exceptions
[health_insights]: https://learn.microsoft.com/azure/azure-health-insights/overview
[radiology_insights_docs]: https://learn.microsoft.com/azure/azure-health-insights/radiology-insights/
[azure_sub]: https://azure.microsoft.com/free/
[cognitive_resource_cli]: https://docs.microsoft.com/azure/cognitive-services/cognitive-services-apis-create-account-cli
[inferences]: https://learn.microsoft.com/azure/azure-health-insights/radiology-insights/inferences
[code_of_conduct]: https://opensource.microsoft.com/codeofconduct/
[python]: https://www.python.org/downloads/
[sample_folder]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/healthinsights/azure-healthinsights-radiologyinsights/samples
[azure_credential]: https://learn.microsoft.com/python/api/overview/azure/identity-readme
|