1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
|
"""Acquisition functions for Bayesian Optimization.
The acquisition functions in this module can be grouped the following way:
- One of the base acquisition functions
(:py:class:`UpperConfidenceBound<bayes_opt.acquisition.UpperConfidenceBound>`,
:py:class:`ProbabilityOfImprovement<bayes_opt.acquisition.ProbabilityOfImprovement>` and
:py:class:`ExpectedImprovement<bayes_opt.acquisition.ExpectedImprovement>`) is always dictating the basic
behavior of the suggestion step. They can be used alone or combined with a meta acquisition function.
- :py:class:`GPHedge<bayes_opt.acquisition.GPHedge>` is a meta acquisition function that combines multiple
base acquisition functions and determines the most suitable one for a particular problem.
- :py:class:`ConstantLiar<bayes_opt.acquisition.ConstantLiar>` is a meta acquisition function that can be
used for parallelized optimization and discourages sampling near a previously suggested, but not yet
evaluated, point.
- :py:class:`AcquisitionFunction<bayes_opt.acquisition.AcquisitionFunction>` is the base class for all
acquisition functions. You can implement your own acquisition function by subclassing it. See the
`Acquisition Functions notebook <../acquisition.html>`__ to understand the many ways this class can be
modified.
"""
from __future__ import annotations
import abc
import warnings
from copy import deepcopy
from typing import TYPE_CHECKING, Any, Literal, NoReturn
import numpy as np
from numpy.random import RandomState
from scipy.optimize import minimize
from scipy.special import softmax
from scipy.stats import norm
from sklearn.gaussian_process import GaussianProcessRegressor
from bayes_opt.exception import (
ConstraintNotSupportedError,
NoValidPointRegisteredError,
TargetSpaceEmptyError,
)
from bayes_opt.target_space import TargetSpace
if TYPE_CHECKING:
from collections.abc import Callable, Sequence
from numpy.typing import NDArray
from scipy.optimize import OptimizeResult
from bayes_opt.constraint import ConstraintModel
Float = np.floating[Any]
class AcquisitionFunction(abc.ABC):
"""Base class for acquisition functions.
Parameters
----------
random_state : int, RandomState, default None
Set the random state for reproducibility.
"""
def __init__(self, random_state: int | RandomState | None = None) -> None:
if random_state is not None:
if isinstance(random_state, RandomState):
self.random_state = random_state
else:
self.random_state = RandomState(random_state)
else:
self.random_state = RandomState()
self.i = 0
@abc.abstractmethod
def base_acq(self, *args: Any, **kwargs: Any) -> NDArray[Float]:
"""Provide access to the base acquisition function."""
def _fit_gp(self, gp: GaussianProcessRegressor, target_space: TargetSpace) -> None:
# Sklearn's GP throws a large number of warnings at times, but
# we don't really need to see them here.
with warnings.catch_warnings():
warnings.simplefilter("ignore")
gp.fit(target_space.params, target_space.target)
if target_space.constraint is not None:
target_space.constraint.fit(target_space.params, target_space._constraint_values)
def suggest(
self,
gp: GaussianProcessRegressor,
target_space: TargetSpace,
n_random: int = 10_000,
n_l_bfgs_b: int = 10,
fit_gp: bool = True,
) -> NDArray[Float]:
"""Suggest a promising point to probe next.
Parameters
----------
gp : GaussianProcessRegressor
A fitted Gaussian Process.
target_space : TargetSpace
The target space to probe.
n_random : int, default 10_000
Number of random samples to use.
n_l_bfgs_b : int, default 10
Number of starting points for the L-BFGS-B optimizer.
fit_gp : bool, default True
Whether to fit the Gaussian Process to the target space.
Set to False if the GP is already fitted.
Returns
-------
np.ndarray
Suggested point to probe next.
"""
if len(target_space) == 0:
msg = (
"Cannot suggest a point without previous samples. Use "
" target_space.random_sample() to generate a point and "
" target_space.probe(*) to evaluate it."
)
raise TargetSpaceEmptyError(msg)
self.i += 1
if fit_gp:
self._fit_gp(gp=gp, target_space=target_space)
acq = self._get_acq(gp=gp, constraint=target_space.constraint)
return self._acq_min(acq, target_space.bounds, n_random=n_random, n_l_bfgs_b=n_l_bfgs_b)
def _get_acq(
self, gp: GaussianProcessRegressor, constraint: ConstraintModel | None = None
) -> Callable[[NDArray[Float]], NDArray[Float]]:
"""Prepare the acquisition function for minimization.
Transforms a base_acq Callable, which takes `mean` and `std` as
input, into an acquisition function that only requires an array of
parameters.
Handles GP predictions and constraints.
Parameters
----------
gp : GaussianProcessRegressor
A fitted Gaussian Process.
constraint : ConstraintModel, default None
A fitted constraint model, if constraints are present and the
acquisition function supports them.
Returns
-------
Callable
Function to minimize.
"""
dim = gp.X_train_.shape[1]
if constraint is not None:
def acq(x: NDArray[Float]) -> NDArray[Float]:
x = x.reshape(-1, dim)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
mean: NDArray[Float]
std: NDArray[Float]
p_constraints: NDArray[Float]
mean, std = gp.predict(x, return_std=True)
p_constraints = constraint.predict(x)
return -1 * self.base_acq(mean, std) * p_constraints
else:
def acq(x: NDArray[Float]) -> NDArray[Float]:
x = x.reshape(-1, dim)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
mean: NDArray[Float]
std: NDArray[Float]
mean, std = gp.predict(x, return_std=True)
return -1 * self.base_acq(mean, std)
return acq
def _acq_min(
self,
acq: Callable[[NDArray[Float]], NDArray[Float]],
bounds: NDArray[Float],
n_random: int = 10_000,
n_l_bfgs_b: int = 10,
) -> NDArray[Float]:
"""Find the maximum of the acquisition function.
Uses a combination of random sampling (cheap) and the 'L-BFGS-B'
optimization method. First by sampling `n_warmup` (1e5) points at random,
and then running L-BFGS-B from `n_iter` (10) random starting points.
Parameters
----------
acq : Callable
Acquisition function to use. Should accept an array of parameters `x`.
bounds : np.ndarray
Bounds of the search space. For `N` parameters this has shape
`(N, 2)` with `[i, 0]` the lower bound of parameter `i` and
`[i, 1]` the upper bound.
n_random : int
Number of random samples to use.
n_l_bfgs_b : int
Number of starting points for the L-BFGS-B optimizer.
Returns
-------
np.ndarray
Parameters maximizing the acquisition function.
"""
if n_random == 0 and n_l_bfgs_b == 0:
error_msg = "Either n_random or n_l_bfgs_b needs to be greater than 0."
raise ValueError(error_msg)
x_min_r, min_acq_r = self._random_sample_minimize(acq, bounds, n_random=n_random)
x_min_l, min_acq_l = self._l_bfgs_b_minimize(acq, bounds, n_x_seeds=n_l_bfgs_b)
# Either n_random or n_l_bfgs_b is not 0 => at least one of x_min_r and x_min_l is not None
if min_acq_r < min_acq_l:
return x_min_r
return x_min_l
def _random_sample_minimize(
self, acq: Callable[[NDArray[Float]], NDArray[Float]], bounds: NDArray[Float], n_random: int
) -> tuple[NDArray[Float] | None, float]:
"""Random search to find the minimum of `acq` function.
Parameters
----------
acq : Callable
Acquisition function to use. Should accept an array of parameters `x`.
bounds : np.ndarray
Bounds of the search space. For `N` parameters this has shape
`(N, 2)` with `[i, 0]` the lower bound of parameter `i` and
`[i, 1]` the upper bound.
n_random : int
Number of random samples to use.
Returns
-------
x_min : np.ndarray
Random sample minimizing the acquisition function.
min_acq : float
Acquisition function value at `x_min`
"""
if n_random == 0:
return None, np.inf
x_tries = self.random_state.uniform(bounds[:, 0], bounds[:, 1], size=(n_random, bounds.shape[0]))
ys = acq(x_tries)
x_min = x_tries[ys.argmin()]
min_acq = ys.min()
return x_min, min_acq
def _l_bfgs_b_minimize(
self, acq: Callable[[NDArray[Float]], NDArray[Float]], bounds: NDArray[Float], n_x_seeds: int = 10
) -> tuple[NDArray[Float] | None, float]:
"""Random search to find the minimum of `acq` function.
Parameters
----------
acq : Callable
Acquisition function to use. Should accept an array of parameters `x`.
bounds : np.ndarray
Bounds of the search space. For `N` parameters this has shape
`(N, 2)` with `[i, 0]` the lower bound of parameter `i` and
`[i, 1]` the upper bound.
n_x_seeds : int
Number of starting points for the L-BFGS-B optimizer.
Returns
-------
x_min : np.ndarray
Minimal result of the L-BFGS-B optimizer.
min_acq : float
Acquisition function value at `x_min`
"""
if n_x_seeds == 0:
return None, np.inf
x_seeds = self.random_state.uniform(bounds[:, 0], bounds[:, 1], size=(n_x_seeds, bounds.shape[0]))
min_acq: float | None = None
x_try: NDArray[Float]
x_min: NDArray[Float]
for x_try in x_seeds:
# Find the minimum of minus the acquisition function
res: OptimizeResult = minimize(acq, x_try, bounds=bounds, method="L-BFGS-B")
# See if success
if not res.success:
continue
# Store it if better than previous minimum(maximum).
if min_acq is None or np.squeeze(res.fun) >= min_acq:
x_min = res.x
min_acq = np.squeeze(res.fun)
if min_acq is None:
min_acq = np.inf
x_min = np.array([np.nan] * bounds.shape[0])
# Clip output to make sure it lies within the bounds. Due to floating
# point technicalities this is not always the case.
return np.clip(x_min, bounds[:, 0], bounds[:, 1]), min_acq
class UpperConfidenceBound(AcquisitionFunction):
r"""Upper Confidence Bound acquisition function.
The upper confidence bound is calculated as
.. math::
\text{UCB}(x) = \mu(x) + \kappa \sigma(x).
Parameters
----------
kappa : float, default 2.576
Governs the exploration/exploitation tradeoff. Lower prefers
exploitation, higher prefers exploration.
exploration_decay : float, default None
Decay rate for kappa. If None, no decay is applied.
exploration_decay_delay : int, default None
Delay for decay. If None, decay is applied from the start.
random_state : int, RandomState, default None
Set the random state for reproducibility.
"""
def __init__(
self,
kappa: float = 2.576,
exploration_decay: float | None = None,
exploration_decay_delay: int | None = None,
random_state: int | RandomState | None = None,
) -> None:
if kappa < 0:
error_msg = "kappa must be greater than or equal to 0."
raise ValueError(error_msg)
super().__init__(random_state=random_state)
self.kappa = kappa
self.exploration_decay = exploration_decay
self.exploration_decay_delay = exploration_decay_delay
def base_acq(self, mean: NDArray[Float], std: NDArray[Float]) -> NDArray[Float]:
"""Calculate the upper confidence bound.
Parameters
----------
mean : np.ndarray
Mean of the predictive distribution.
std : np.ndarray
Standard deviation of the predictive distribution.
Returns
-------
np.ndarray
Acquisition function value.
"""
return mean + self.kappa * std
def suggest(
self,
gp: GaussianProcessRegressor,
target_space: TargetSpace,
n_random: int = 10_000,
n_l_bfgs_b: int = 10,
fit_gp: bool = True,
) -> NDArray[Float]:
"""Suggest a promising point to probe next.
Parameters
----------
gp : GaussianProcessRegressor
A fitted Gaussian Process.
target_space : TargetSpace
The target space to probe.
n_random : int, default 10_000
Number of random samples to use.
n_l_bfgs_b : int, default 10
Number of starting points for the L-BFGS-B optimizer.
fit_gp : bool, default True
Whether to fit the Gaussian Process to the target space.
Set to False if the GP is already fitted.
Returns
-------
np.ndarray
Suggested point to probe next.
"""
if target_space.constraint is not None:
msg = (
f"Received constraints, but acquisition function {type(self)} "
"does not support constrained optimization."
)
raise ConstraintNotSupportedError(msg)
x_max = super().suggest(
gp=gp, target_space=target_space, n_random=n_random, n_l_bfgs_b=n_l_bfgs_b, fit_gp=fit_gp
)
self.decay_exploration()
return x_max
def decay_exploration(self) -> None:
"""Decay kappa by a constant rate.
Adjust exploration/exploitation trade-off by reducing kappa.
Note
----
This method is called automatically at the end of each ``suggest()`` call.
"""
if self.exploration_decay is not None and (
self.exploration_decay_delay is None or self.exploration_decay_delay <= self.i
):
self.kappa = self.kappa * self.exploration_decay
class ProbabilityOfImprovement(AcquisitionFunction):
r"""Probability of Improvement acqusition function.
Calculated as
.. math:: \text{POI}(x) = \Phi\left( \frac{\mu(x)-y_{\text{max}} - \xi }{\sigma(x)} \right)
where :math:`\Phi` is the CDF of the normal distribution.
Parameters
----------
xi : float, positive
Governs the exploration/exploitation tradeoff. Lower prefers
exploitation, higher prefers exploration.
exploration_decay : float, default None
Decay rate for xi. If None, no decay is applied.
exploration_decay_delay : int, default None
Delay for decay. If None, decay is applied from the start.
random_state : int, RandomState, default None
Set the random state for reproducibility.
"""
def __init__(
self,
xi: float,
exploration_decay: float | None = None,
exploration_decay_delay: int | None = None,
random_state: int | RandomState | None = None,
) -> None:
super().__init__(random_state=random_state)
self.xi = xi
self.exploration_decay = exploration_decay
self.exploration_decay_delay = exploration_decay_delay
self.y_max = None
def base_acq(self, mean: NDArray[Float], std: NDArray[Float]) -> NDArray[Float]:
"""Calculate the probability of improvement.
Parameters
----------
mean : np.ndarray
Mean of the predictive distribution.
std : np.ndarray
Standard deviation of the predictive distribution.
Returns
-------
np.ndarray
Acquisition function value.
Raises
------
ValueError
If y_max is not set.
"""
if self.y_max is None:
msg = (
"y_max is not set. If you are calling this method outside "
"of suggest(), you must set y_max manually."
)
raise ValueError(msg)
z = (mean - self.y_max - self.xi) / std
return norm.cdf(z)
def suggest(
self,
gp: GaussianProcessRegressor,
target_space: TargetSpace,
n_random: int = 10_000,
n_l_bfgs_b: int = 10,
fit_gp: bool = True,
) -> NDArray[Float]:
"""Suggest a promising point to probe next.
Parameters
----------
gp : GaussianProcessRegressor
A fitted Gaussian Process.
target_space : TargetSpace
The target space to probe.
n_random : int, default 10_000
Number of random samples to use.
n_l_bfgs_b : int, default 10
Number of starting points for the L-BFGS-B optimizer.
fit_gp : bool, default True
Whether to fit the Gaussian Process to the target space.
Set to False if the GP is already fitted.
Returns
-------
np.ndarray
Suggested point to probe next.
"""
y_max = target_space._target_max()
if y_max is None and not target_space.empty:
# If target space is empty, let base class handle the error
msg = (
"Cannot suggest a point without an allowed point. Use "
"target_space.random_sample() to generate a point until "
" at least one point that satisfies the constraints is found."
)
raise NoValidPointRegisteredError(msg)
self.y_max = y_max
x_max = super().suggest(
gp=gp, target_space=target_space, n_random=n_random, n_l_bfgs_b=n_l_bfgs_b, fit_gp=fit_gp
)
self.decay_exploration()
return x_max
def decay_exploration(self) -> None:
r"""Decay xi by a constant rate.
Adjust exploration/exploitation trade-off by reducing xi.
Note
----
This method is called automatically at the end of each ``suggest()`` call.
"""
if self.exploration_decay is not None and (
self.exploration_decay_delay is None or self.exploration_decay_delay <= self.i
):
self.xi = self.xi * self.exploration_decay
class ExpectedImprovement(AcquisitionFunction):
r"""Expected Improvement acqusition function.
Similar to Probability of Improvement (`ProbabilityOfImprovement`), but also considers the
magnitude of improvement.
Calculated as
.. math::
\text{EI}(x) = (\mu(x)-y_{\text{max}} - \xi) \Phi\left(
\frac{\mu(x)-y_{\text{max}} - \xi }{\sigma(x)} \right)
+ \sigma(x) \phi\left(
\frac{\mu(x)-y_{\text{max}} - \xi }{\sigma(x)} \right)
where :math:`\Phi` is the CDF and :math:`\phi` the PDF of the normal
distribution.
Parameters
----------
xi : float, positive
Governs the exploration/exploitation tradeoff. Lower prefers
exploitation, higher prefers exploration.
exploration_decay : float, default None
Decay rate for xi. If None, no decay is applied.
exploration_decay_delay : int, default None
random_state : int, RandomState, default None
Set the random state for reproducibility.
"""
def __init__(
self,
xi: float,
exploration_decay: float | None = None,
exploration_decay_delay: int | None = None,
random_state: int | RandomState | None = None,
) -> None:
super().__init__(random_state=random_state)
self.xi = xi
self.exploration_decay = exploration_decay
self.exploration_decay_delay = exploration_decay_delay
self.y_max = None
def base_acq(self, mean: NDArray[Float], std: NDArray[Float]) -> NDArray[Float]:
"""Calculate the expected improvement.
Parameters
----------
mean : np.ndarray
Mean of the predictive distribution.
std : np.ndarray
Standard deviation of the predictive distribution.
Returns
-------
np.ndarray
Acquisition function value.
Raises
------
ValueError
If y_max is not set.
"""
if self.y_max is None:
msg = (
"y_max is not set. If you are calling this method outside "
"of suggest(), ensure y_max is set, or set it manually."
)
raise ValueError(msg)
a = mean - self.y_max - self.xi
z = a / std
return a * norm.cdf(z) + std * norm.pdf(z)
def suggest(
self,
gp: GaussianProcessRegressor,
target_space: TargetSpace,
n_random: int = 10_000,
n_l_bfgs_b: int = 10,
fit_gp: bool = True,
) -> NDArray[Float]:
"""Suggest a promising point to probe next.
Parameters
----------
gp : GaussianProcessRegressor
A fitted Gaussian Process.
target_space : TargetSpace
The target space to probe.
n_random : int, default 10_000
Number of random samples to use.
n_l_bfgs_b : int, default 10
Number of starting points for the L-BFGS-B optimizer.
fit_gp : bool, default True
Whether to fit the Gaussian Process to the target space.
Set to False if the GP is already fitted.
Returns
-------
np.ndarray
Suggested point to probe next.
"""
y_max = target_space._target_max()
if y_max is None and not target_space.empty:
# If target space is empty, let base class handle the error
msg = (
"Cannot suggest a point without an allowed point. Use "
"target_space.random_sample() to generate a point until "
" at least one point that satisfies the constraints is found."
)
raise NoValidPointRegisteredError(msg)
self.y_max = y_max
x_max = super().suggest(
gp=gp, target_space=target_space, n_random=n_random, n_l_bfgs_b=n_l_bfgs_b, fit_gp=fit_gp
)
self.decay_exploration()
return x_max
def decay_exploration(self) -> None:
r"""Decay xi by a constant rate.
Adjust exploration/exploitation trade-off by reducing xi.
Note
----
This method is called automatically at the end of each ``suggest()`` call.
"""
if self.exploration_decay is not None and (
self.exploration_decay_delay is None or self.exploration_decay_delay <= self.i
):
self.xi = self.xi * self.exploration_decay
class ConstantLiar(AcquisitionFunction):
"""Constant Liar acquisition function.
Used for asynchronous optimization. It operates on a copy of the target space
that includes the previously suggested points that have not been evaluated yet.
A GP fitted to this target space is less likely to suggest the same point again,
since the variance of the predictive distribution is lower at these points.
This is discourages the optimization algorithm from suggesting the same point
to multiple workers.
Parameters
----------
base_acquisition : AcquisitionFunction
The acquisition function to use.
strategy : float or str, default 'max'
Strategy to use for the constant liar. If a float, the constant liar
will always register dummies with this value. If 'min'/'mean'/'max',
the constant liar will register dummies with the minimum/mean/maximum
target value in the target space.
random_state : int, RandomState, default None
Set the random state for reproducibility.
atol : float, default 1e-5
Absolute tolerance to eliminate a dummy point.
rtol : float, default 1e-8
Relative tolerance to eliminate a dummy point.
"""
def __init__(
self,
base_acquisition: AcquisitionFunction,
strategy: Literal["min", "mean", "max"] | float = "max",
random_state: int | RandomState | None = None,
atol: float = 1e-5,
rtol: float = 1e-8,
) -> None:
super().__init__(random_state)
self.base_acquisition = base_acquisition
self.dummies = []
if not isinstance(strategy, float) and strategy not in ["min", "mean", "max"]:
error_msg = f"Received invalid argument {strategy} for strategy."
raise ValueError(error_msg)
self.strategy: Literal["min", "mean", "max"] | float = strategy
self.atol = atol
self.rtol = rtol
def base_acq(self, *args: Any, **kwargs: Any) -> NDArray[Float]:
"""Calculate the acquisition function.
Calls the base acquisition function's `base_acq` method.
Returns
-------
np.ndarray
Acquisition function value.
"""
return self.base_acquisition.base_acq(*args, **kwargs)
def _copy_target_space(self, target_space: TargetSpace) -> TargetSpace:
"""Create a copy of the target space.
Parameters
----------
target_space : TargetSpace
The target space to copy.
Returns
-------
TargetSpace
A copy of the target space.
"""
keys = target_space.keys
pbounds = {key: bound for key, bound in zip(keys, target_space.bounds)}
target_space_copy = TargetSpace(
None,
pbounds=pbounds,
constraint=target_space.constraint,
allow_duplicate_points=target_space._allow_duplicate_points,
)
target_space_copy._params = deepcopy(target_space._params)
target_space_copy._target = deepcopy(target_space._target)
return target_space_copy
def _remove_expired_dummies(self, target_space: TargetSpace) -> None:
"""Remove expired dummy points from the list of dummies.
Once a worker has evaluated a dummy point, the dummy is discarded. To
accomplish this, we compare every dummy point to the current target
space's parameters and remove it if it is close to any of them.
Parameters
----------
target_space : TargetSpace
The target space to compare the dummies to.
"""
dummies = []
for dummy in self.dummies:
close = np.isclose(dummy, target_space.params, rtol=self.rtol, atol=self.atol)
if not close.all(axis=1).any():
dummies.append(dummy)
self.dummies = dummies
def suggest(
self,
gp: GaussianProcessRegressor,
target_space: TargetSpace,
n_random: int = 10_000,
n_l_bfgs_b: int = 10,
fit_gp: bool = True,
) -> NDArray[Float]:
"""Suggest a promising point to probe next.
Parameters
----------
gp : GaussianProcessRegressor
A fitted Gaussian Process.
target_space : TargetSpace
The target space to probe.
n_random : int, default 10_000
Number of random samples to use.
n_l_bfgs_b : int, default 10
Number of starting points for the L-BFGS-B optimizer.
fit_gp : bool, default True
Whether to fit the Gaussian Process to the target space.
Set to False if the GP is already fitted.
Returns
-------
np.ndarray
Suggested point to probe next.
"""
if len(target_space) == 0:
msg = (
"Cannot suggest a point without previous samples. Use "
" target_space.random_sample() to generate a point and "
" target_space.probe(*) to evaluate it."
)
raise TargetSpaceEmptyError(msg)
if target_space.constraint is not None:
msg = (
f"Received constraints, but acquisition function {type(self)} "
"does not support constrained optimization."
)
raise ConstraintNotSupportedError(msg)
# Check if any dummies have been evaluated and remove them
self._remove_expired_dummies(target_space)
# Create a copy of the target space
dummy_target_space = self._copy_target_space(target_space)
dummy_target: float
# Choose the dummy target value
if isinstance(self.strategy, float):
dummy_target = self.strategy
elif self.strategy == "min":
dummy_target = target_space.target.min()
elif self.strategy == "mean":
dummy_target = target_space.target.mean()
elif self.strategy != "max":
error_msg = f"Received invalid argument {self.strategy} for strategy."
raise ValueError(error_msg)
else:
dummy_target = target_space.target.max()
# Register the dummies to the dummy target space
for dummy in self.dummies:
dummy_target_space.register(dummy, dummy_target)
# Fit the GP to the dummy target space and suggest a point
self._fit_gp(gp=gp, target_space=dummy_target_space)
x_max = self.base_acquisition.suggest(
gp, dummy_target_space, n_random=n_random, n_l_bfgs_b=n_l_bfgs_b, fit_gp=False
)
# Register the suggested point as a dummy
self.dummies.append(x_max)
return x_max
class GPHedge(AcquisitionFunction):
"""GPHedge acquisition function.
At each suggestion step, GPHedge samples suggestions from each base
acquisition function acq_i. Then a candidate is selected from the
suggestions based on the on the cumulative rewards of each acq_i.
After evaluating the candidate, the gains are updated (in the next
iteration) based on the updated expectation value of the candidates.
For more information, see:
Brochu et al., "Portfolio Allocation for Bayesian Optimization",
https://arxiv.org/abs/1009.5419
Parameters
----------
base_acquisitions : Sequence[AcquisitionFunction]
Sequence of base acquisition functions.
random_state : int, RandomState, default None
Set the random state for reproducibility.
"""
def __init__(
self, base_acquisitions: Sequence[AcquisitionFunction], random_state: int | RandomState | None = None
) -> None:
super().__init__(random_state)
self.base_acquisitions = list(base_acquisitions)
self.n_acq = len(self.base_acquisitions)
self.gains = np.zeros(self.n_acq)
self.previous_candidates = None
def base_acq(self, *args: Any, **kwargs: Any) -> NoReturn:
"""Raise an error, since the base acquisition function is ambiguous."""
msg = (
"GPHedge base acquisition function is ambiguous."
" You may use self.base_acquisitions[i].base_acq(mean, std)"
" to get the base acquisition function for the i-th acquisition."
)
raise TypeError(msg)
def _sample_idx_from_softmax_gains(self) -> int:
"""Sample an index weighted by the softmax of the gains."""
cumsum_softmax_g = np.cumsum(softmax(self.gains))
r = self.random_state.rand()
return np.argmax(r <= cumsum_softmax_g) # Returns the first True value
def _update_gains(self, gp: GaussianProcessRegressor) -> None:
"""Update the gains of the base acquisition functions."""
with warnings.catch_warnings():
warnings.simplefilter("ignore")
rewards = gp.predict(self.previous_candidates)
self.gains += rewards
self.previous_candidates = None
def suggest(
self,
gp: GaussianProcessRegressor,
target_space: TargetSpace,
n_random: int = 10_000,
n_l_bfgs_b: int = 10,
fit_gp: bool = True,
) -> NDArray[Float]:
"""Suggest a promising point to probe next.
Parameters
----------
gp : GaussianProcessRegressor
A fitted Gaussian Process.
target_space : TargetSpace
The target space to probe.
n_random : int, default 10_000
Number of random samples to use.
n_l_bfgs_b : int, default 10
Number of starting points for the L-BFGS-B optimizer.
fit_gp : bool, default True
Whether to fit the Gaussian Process to the target space.
Set to False if the GP is already fitted.
Returns
-------
np.ndarray
Suggested point to probe next.
"""
if len(target_space) == 0:
msg = (
"Cannot suggest a point without previous samples. Use "
" target_space.random_sample() to generate a point and "
" target_space.probe(*) to evaluate it."
)
raise TargetSpaceEmptyError(msg)
self.i += 1
if fit_gp:
self._fit_gp(gp=gp, target_space=target_space)
# Update the gains of the base acquisition functions
if self.previous_candidates is not None:
self._update_gains(gp)
# Suggest a point using each base acquisition function
x_max = [
base_acq.suggest(
gp=gp,
target_space=target_space,
n_random=n_random // self.n_acq,
n_l_bfgs_b=n_l_bfgs_b // self.n_acq,
fit_gp=False,
)
for base_acq in self.base_acquisitions
]
self.previous_candidates = np.array(x_max)
idx = self._sample_idx_from_softmax_gains()
return x_max[idx]
|