1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
|
from __future__ import annotations
import pickle
from pathlib import Path
import numpy as np
import pytest
from bayes_opt import BayesianOptimization, acquisition
from bayes_opt.acquisition import AcquisitionFunction
from bayes_opt.event import DEFAULT_EVENTS, Events
from bayes_opt.exception import NotUniqueError
from bayes_opt.logger import ScreenLogger
from bayes_opt.target_space import TargetSpace
def target_func(**kwargs):
# arbitrary target func
return sum(kwargs.values())
PBOUNDS = {"p1": (0, 10), "p2": (0, 10)}
def test_properties():
optimizer = BayesianOptimization(target_func, PBOUNDS, random_state=1)
assert isinstance(optimizer.space, TargetSpace)
assert isinstance(optimizer.acquisition_function, AcquisitionFunction)
# constraint present tested in test_constraint.py
assert optimizer.constraint is None
def test_register():
optimizer = BayesianOptimization(target_func, PBOUNDS, random_state=1)
assert len(optimizer.space) == 0
optimizer.register(params={"p1": 1, "p2": 2}, target=3)
assert len(optimizer.res) == 1
assert len(optimizer.space) == 1
optimizer.space.register(params={"p1": 5, "p2": 4}, target=9)
assert len(optimizer.res) == 2
assert len(optimizer.space) == 2
with pytest.raises(NotUniqueError):
optimizer.register(params={"p1": 1, "p2": 2}, target=3)
with pytest.raises(NotUniqueError):
optimizer.register(params={"p1": 5, "p2": 4}, target=9)
def test_probe_lazy():
optimizer = BayesianOptimization(target_func, PBOUNDS, random_state=1)
optimizer.probe(params={"p1": 1, "p2": 2}, lazy=True)
assert len(optimizer.space) == 0
assert len(optimizer._queue) == 1
optimizer.probe(params={"p1": 6, "p2": 2}, lazy=True)
assert len(optimizer.space) == 0
assert len(optimizer._queue) == 2
optimizer.probe(params={"p1": 6, "p2": 2}, lazy=True)
assert len(optimizer.space) == 0
assert len(optimizer._queue) == 3
def test_probe_eager():
optimizer = BayesianOptimization(target_func, PBOUNDS, random_state=1, allow_duplicate_points=True)
optimizer.probe(params={"p1": 1, "p2": 2}, lazy=False)
assert len(optimizer.space) == 1
assert len(optimizer._queue) == 0
assert optimizer.max["target"] == 3
assert optimizer.max["params"] == {"p1": 1, "p2": 2}
optimizer.probe(params={"p1": 3, "p2": 3}, lazy=False)
assert len(optimizer.space) == 2
assert len(optimizer._queue) == 0
assert optimizer.max["target"] == 6
assert optimizer.max["params"] == {"p1": 3, "p2": 3}
optimizer.probe(params={"p1": 3, "p2": 3}, lazy=False)
assert len(optimizer.space) == 3
assert len(optimizer._queue) == 0
assert optimizer.max["target"] == 6
assert optimizer.max["params"] == {"p1": 3, "p2": 3}
def test_suggest_at_random():
acq = acquisition.ProbabilityOfImprovement(xi=0)
optimizer = BayesianOptimization(target_func, PBOUNDS, acq, random_state=1)
for _ in range(50):
sample = optimizer.space.params_to_array(optimizer.suggest())
assert len(sample) == optimizer.space.dim
assert all(sample >= optimizer.space.bounds[:, 0])
assert all(sample <= optimizer.space.bounds[:, 1])
def test_suggest_with_one_observation():
acq = acquisition.UpperConfidenceBound(kappa=5)
optimizer = BayesianOptimization(target_func, PBOUNDS, acq, random_state=1)
optimizer.register(params={"p1": 1, "p2": 2}, target=3)
for _ in range(5):
sample = optimizer.space.params_to_array(optimizer.suggest())
assert len(sample) == optimizer.space.dim
assert all(sample >= optimizer.space.bounds[:, 0])
assert all(sample <= optimizer.space.bounds[:, 1])
# suggestion = optimizer.suggest(util)
# for _ in range(5):
# new_suggestion = optimizer.suggest(util)
# assert suggestion == new_suggestion
def test_prime_queue_all_empty():
optimizer = BayesianOptimization(target_func, PBOUNDS, random_state=1)
assert len(optimizer._queue) == 0
assert len(optimizer.space) == 0
optimizer._prime_queue(init_points=0)
assert len(optimizer._queue) == 1
assert len(optimizer.space) == 0
def test_prime_queue_empty_with_init():
optimizer = BayesianOptimization(target_func, PBOUNDS, random_state=1)
assert len(optimizer._queue) == 0
assert len(optimizer.space) == 0
optimizer._prime_queue(init_points=5)
assert len(optimizer._queue) == 5
assert len(optimizer.space) == 0
def test_prime_queue_with_register():
optimizer = BayesianOptimization(target_func, PBOUNDS, random_state=1)
assert len(optimizer._queue) == 0
assert len(optimizer.space) == 0
optimizer.register(params={"p1": 1, "p2": 2}, target=3)
optimizer._prime_queue(init_points=0)
assert len(optimizer._queue) == 0
assert len(optimizer.space) == 1
def test_prime_queue_with_register_and_init():
optimizer = BayesianOptimization(target_func, PBOUNDS, random_state=1)
assert len(optimizer._queue) == 0
assert len(optimizer.space) == 0
optimizer.register(params={"p1": 1, "p2": 2}, target=3)
optimizer._prime_queue(init_points=3)
assert len(optimizer._queue) == 3
assert len(optimizer.space) == 1
def test_prime_subscriptions():
optimizer = BayesianOptimization(target_func, PBOUNDS, random_state=1)
optimizer._prime_subscriptions()
# Test that the default observer is correctly subscribed
for event in DEFAULT_EVENTS:
assert all([isinstance(k, ScreenLogger) for k in optimizer._events[event]])
assert all([hasattr(k, "update") for k in optimizer._events[event]])
test_subscriber = "test_subscriber"
def test_callback(event, instance):
pass
optimizer = BayesianOptimization(target_func, PBOUNDS, random_state=1)
optimizer.subscribe(event=Events.OPTIMIZATION_START, subscriber=test_subscriber, callback=test_callback)
# Test that the desired observer is subscribed
assert all([k == test_subscriber for k in optimizer._events[Events.OPTIMIZATION_START]])
assert all([v == test_callback for v in optimizer._events[Events.OPTIMIZATION_START].values()])
# Check that prime subscriptions won't overwrite manual subscriptions
optimizer._prime_subscriptions()
assert all([k == test_subscriber for k in optimizer._events[Events.OPTIMIZATION_START]])
assert all([v == test_callback for v in optimizer._events[Events.OPTIMIZATION_START].values()])
assert optimizer._events[Events.OPTIMIZATION_STEP] == {}
assert optimizer._events[Events.OPTIMIZATION_END] == {}
with pytest.raises(KeyError):
optimizer._events["other"]
def test_set_bounds():
pbounds = {"p1": (0, 1), "p3": (0, 3), "p2": (0, 2), "p4": (0, 4)}
optimizer = BayesianOptimization(target_func, pbounds, random_state=1)
# Ignore unknown keys
optimizer.set_bounds({"other": (7, 8)})
assert all(optimizer.space.bounds[:, 0] == np.array([0, 0, 0, 0]))
assert all(optimizer.space.bounds[:, 1] == np.array([1, 2, 3, 4]))
# Update bounds accordingly
optimizer.set_bounds({"p2": (1, 8)})
assert all(optimizer.space.bounds[:, 0] == np.array([0, 1, 0, 0]))
assert all(optimizer.space.bounds[:, 1] == np.array([1, 8, 3, 4]))
def test_set_gp_params():
optimizer = BayesianOptimization(target_func, PBOUNDS, random_state=1)
assert optimizer._gp.alpha == 1e-6
assert optimizer._gp.n_restarts_optimizer == 5
optimizer.set_gp_params(alpha=1e-2)
assert optimizer._gp.alpha == 1e-2
assert optimizer._gp.n_restarts_optimizer == 5
optimizer.set_gp_params(n_restarts_optimizer=7)
assert optimizer._gp.alpha == 1e-2
assert optimizer._gp.n_restarts_optimizer == 7
def test_maximize():
class Tracker:
def __init__(self):
self.start_count = 0
self.step_count = 0
self.end_count = 0
def update_start(self, event, instance):
self.start_count += 1
def update_step(self, event, instance):
self.step_count += 1
def update_end(self, event, instance):
self.end_count += 1
def reset(self):
self.__init__()
acq = acquisition.UpperConfidenceBound()
optimizer = BayesianOptimization(
target_func, PBOUNDS, acq, random_state=np.random.RandomState(1), allow_duplicate_points=True
)
tracker = Tracker()
optimizer.subscribe(event=Events.OPTIMIZATION_START, subscriber=tracker, callback=tracker.update_start)
optimizer.subscribe(event=Events.OPTIMIZATION_STEP, subscriber=tracker, callback=tracker.update_step)
optimizer.subscribe(event=Events.OPTIMIZATION_END, subscriber=tracker, callback=tracker.update_end)
optimizer.maximize(init_points=0, n_iter=0)
assert not optimizer._queue
assert len(optimizer.space) == 1
assert tracker.start_count == 1
assert tracker.step_count == 1
assert tracker.end_count == 1
optimizer.set_gp_params(alpha=1e-2)
optimizer.maximize(init_points=2, n_iter=0)
assert not optimizer._queue
assert len(optimizer.space) == 3
assert optimizer._gp.alpha == 1e-2
assert tracker.start_count == 2
assert tracker.step_count == 3
assert tracker.end_count == 2
optimizer.maximize(init_points=0, n_iter=2)
assert not optimizer._queue
assert len(optimizer.space) == 5
assert tracker.start_count == 3
assert tracker.step_count == 5
assert tracker.end_count == 3
def test_define_wrong_transformer():
with pytest.raises(TypeError):
BayesianOptimization(
target_func, PBOUNDS, random_state=np.random.RandomState(1), bounds_transformer=3
)
def test_single_value_objective():
"""
As documented [here](https://github.com/scipy/scipy/issues/16898)
scipy is changing the way they handle 1D objectives inside minimize.
This is a simple test to make sure our tests fail if scipy updates this
in future
"""
pbounds = {"x": (-10, 10)}
optimizer = BayesianOptimization(f=lambda x: x * 3, pbounds=pbounds, verbose=2, random_state=1)
optimizer.maximize(init_points=2, n_iter=3)
def test_pickle():
"""
several users have asked that the BO object be 'pickalable'
This tests that this is the case
"""
optimizer = BayesianOptimization(f=None, pbounds={"x": (-10, 10)}, verbose=2, random_state=1)
test_dump = Path("test_dump.obj")
with test_dump.open("wb") as filehandler:
pickle.dump(optimizer, filehandler)
test_dump.unlink()
def test_duplicate_points():
"""
The default behavior of this code is to not enable duplicate points in the target space,
however there are situations in which you may want this, particularly optimization in high
noise situations. In that case one can set allow_duplicate_points to be True.
This tests the behavior of the code around duplicate points under several scenarios
"""
# test manual registration of duplicate points (should generate error)
acq = acquisition.UpperConfidenceBound(kappa=5.0) # kappa determines explore/Exploitation ratio
optimizer = BayesianOptimization(f=None, pbounds={"x": (-2, 2)}, acquisition_function=acq, random_state=1)
next_point_to_probe = optimizer.suggest()
target = 1
# register once (should work)
optimizer.register(params=next_point_to_probe, target=target)
# register twice (should throw error)
try:
optimizer.register(params=next_point_to_probe, target=target)
duplicate_point_error = None # should be overwritten below
except Exception as e:
duplicate_point_error = e
assert isinstance(duplicate_point_error, NotUniqueError)
# OK, now let's test that it DOESNT fail when allow_duplicate_points=True
optimizer = BayesianOptimization(
f=None, pbounds={"x": (-2, 2)}, random_state=1, allow_duplicate_points=True
)
optimizer.register(params=next_point_to_probe, target=target)
# and again (should throw warning)
optimizer.register(params=next_point_to_probe, target=target)
if __name__ == "__main__":
r"""
CommandLine:
python tests/test_bayesian_optimization.py
"""
pytest.main([__file__])
|