File: lssm.py

package info (click to toggle)
python-bayespy 0.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,132 kB
  • sloc: python: 22,402; makefile: 156
file content (317 lines) | stat: -rw-r--r-- 10,690 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
################################################################################
# Copyright (C) 2013-2014 Jaakko Luttinen
#
# This file is licensed under the MIT License.
################################################################################


"""
Demonstrate linear Gaussian state-space model.

Some of the functions in this module are re-usable: 
  * ``model`` can be used to construct the classical linear state-space model.
  * ``infer`` can be used to apply linear state-space model to given data.
"""

import numpy as np
import scipy
import matplotlib.pyplot as plt

from bayespy.nodes import GaussianMarkovChain
from bayespy.nodes import Gaussian, GaussianARD
from bayespy.nodes import Gamma
from bayespy.nodes import SumMultiply
from bayespy.inference.vmp.nodes.gamma import diagonal

from bayespy.utils import random

from bayespy.inference.vmp.vmp import VB
from bayespy.inference.vmp import transformations

import bayespy.plot as bpplt


def model(M=10, N=100, D=3):
    """
    Construct linear state-space model.

    See, for instance, the following publication:
    "Fast variational Bayesian linear state-space model"
    Luttinen (ECML 2013)
    """

    # Dynamics matrix with ARD
    alpha = Gamma(1e-5,
                  1e-5,
                  plates=(D,),
                  name='alpha')
    A = GaussianARD(0,
                    alpha,
                    shape=(D,),
                    plates=(D,),
                    plotter=bpplt.GaussianHintonPlotter(rows=0, 
                                                        cols=1,
                                                        scale=0),
                    name='A')
    A.initialize_from_value(np.identity(D))

    # Latent states with dynamics
    X = GaussianMarkovChain(np.zeros(D),         # mean of x0
                            1e-3*np.identity(D), # prec of x0
                            A,                   # dynamics
                            np.ones(D),          # innovation
                            n=N,                 # time instances
                            plotter=bpplt.GaussianMarkovChainPlotter(scale=2),
                            name='X')
    X.initialize_from_value(np.random.randn(N,D))

    # Mixing matrix from latent space to observation space using ARD
    gamma = Gamma(1e-5,
                  1e-5,
                  plates=(D,),
                  name='gamma')
    gamma.initialize_from_value(1e-2*np.ones(D))
    C = GaussianARD(0,
                    gamma,
                    shape=(D,),
                    plates=(M,1),
                    plotter=bpplt.GaussianHintonPlotter(rows=0,
                                                        cols=2,
                                                        scale=0),
                    name='C')
    C.initialize_from_value(np.random.randn(M,1,D))

    # Observation noise
    tau = Gamma(1e-5,
                1e-5,
                name='tau')
    tau.initialize_from_value(1e2)

    # Underlying noiseless function
    F = SumMultiply('i,i', 
                    C, 
                    X,
                    name='F')
    
    # Noisy observations
    Y = GaussianARD(F,
                    tau,
                    name='Y')

    Q = VB(Y, F, C, gamma, X, A, alpha, tau, C)

    return Q


def infer(y, D, 
          mask=True, 
          maxiter=100,
          rotate=True,
          debug=False,
          precompute=False,
          update_hyper=0,
          start_rotating=0,
          plot_C=True,
          monitor=True,
          autosave=None):
    """
    Apply linear state-space model for the given data.
    """
        
    (M, N) = np.shape(y)

    # Construct the model
    Q = model(M, N, D)
    if not plot_C:
        Q['C'].set_plotter(None)
        
    if autosave is not None:
        Q.set_autosave(autosave, iterations=10)

    # Observe data
    Q['Y'].observe(y, mask=mask)

    # Set up rotation speed-up
    if rotate:
        
        # Initial rotate the D-dimensional state space (X, A, C)
        # Does not update hyperparameters
        rotA_init = transformations.RotateGaussianARD(Q['A'], 
                                                      axis=0,
                                                      precompute=precompute)
        rotX_init = transformations.RotateGaussianMarkovChain(Q['X'], 
                                                              rotA_init)
        rotC_init = transformations.RotateGaussianARD(Q['C'],
                                                      axis=0,
                                                      precompute=precompute)
        R_X_init = transformations.RotationOptimizer(rotX_init, rotC_init, D)

        # Rotate the D-dimensional state space (X, A, C)
        rotA = transformations.RotateGaussianARD(Q['A'], 
                                                 Q['alpha'],
                                                 axis=0,
                                                 precompute=precompute)
        rotX = transformations.RotateGaussianMarkovChain(Q['X'], 
                                                         rotA)
        rotC = transformations.RotateGaussianARD(Q['C'],
                                                 Q['gamma'],
                                                 axis=0,
                                                 precompute=precompute)
        R_X = transformations.RotationOptimizer(rotX, rotC, D)

        # Keyword arguments for the rotation
        if debug:
            rotate_kwargs = {'maxiter': 10,
                             'check_bound': True,
                             'check_gradient': True}
        else:
            rotate_kwargs = {'maxiter': 10}

    # Plot initial distributions
    if monitor:
        Q.plot()

    # Run inference using rotations
    for ind in range(maxiter):

        if ind < update_hyper:
            # It might be a good idea to learn the lower level nodes a bit
            # before starting to learn the upper level nodes.
            Q.update('X', 'C', 'A', 'tau', plot=monitor)
            if rotate and ind >= start_rotating:
                # Use the rotation which does not update alpha nor beta
                R_X_init.rotate(**rotate_kwargs)
        else:
            Q.update(plot=monitor)
            if rotate and ind >= start_rotating:
                # It might be a good idea to not rotate immediately because it
                # might lead to pruning out components too efficiently before
                # even estimating them roughly
                R_X.rotate(**rotate_kwargs)

    # Return the posterior approximation
    return Q


def simulate_data(M, N):
    """
    Generate a dataset using linear state-space model.

    The process has two latent oscillation components and one random walk
    component.
    """
    # Simulate some data
    D = 3
    c = np.random.randn(M, D)
    w = 0.3
    a = np.array([[np.cos(w), -np.sin(w), 0], 
                  [np.sin(w), np.cos(w),  0], 
                  [0,         0,          1]])
    x = np.empty((N,D))
    f = np.empty((M,N))
    y = np.empty((M,N))
    x[0] = 10*np.random.randn(D)
    f[:,0] = np.dot(c,x[0])
    y[:,0] = f[:,0] + 3*np.random.randn(M)
    for n in range(N-1):
        x[n+1] = np.dot(a,x[n]) + np.random.randn(D)
        f[:,n+1] = np.dot(c,x[n+1])
        y[:,n+1] = f[:,n+1] + 3*np.random.randn(M)

    return (y, f)


@bpplt.interactive
def demo(M=6, N=200, D=3, maxiter=100, debug=False, seed=42, rotate=True,
         precompute=False, plot=True, monitor=True):
    """
    Run the demo for linear state-space model.
    """

    # Use deterministic random numbers
    if seed is not None:
        np.random.seed(seed)

    # Get data
    (y, f) = simulate_data(M, N)

    # Add missing values randomly
    mask = random.mask(M, N, p=0.3)
    # Add missing values to a period of time
    mask[:,30:80] = False
    y[~mask] = np.nan # BayesPy doesn't require this. Just for plotting.

    # Run inference
    Q = infer(y, D,
              mask=mask,
              rotate=rotate,
              debug=debug,
              monitor=monitor,
              maxiter=maxiter)

    if plot:
        # Show results
        plt.figure()
        bpplt.timeseries_normal(Q['F'], scale=2)
        bpplt.timeseries(f, linestyle='-', color='b')
        bpplt.timeseries(y, linestyle='None', color='r', marker='.')


if __name__ == '__main__':

    import sys, getopt, os
    try:
        opts, args = getopt.getopt(sys.argv[1:],
                                   "",
                                   ["m=",
                                    "n=",
                                    "d=",
                                    "seed=",
                                    "maxiter=",
                                    "debug",
                                    "precompute",
                                    "no-plot",
                                    "no-monitor",
                                    "no-rotation"])
    except getopt.GetoptError:
        print('python lssm.py <options>')
        print('--m=<INT>        Dimensionality of data vectors')
        print('--n=<INT>        Number of data vectors')
        print('--d=<INT>        Dimensionality of the latent vectors in the model')
        print('--no-rotation    Do not apply speed-up rotations')
        print('--maxiter=<INT>  Maximum number of VB iterations')
        print('--seed=<INT>     Seed (integer) for the random number generator')
        print('--debug          Check that the rotations are implemented correctly')
        print('--no-plot        Do not plot the results')
        print('--no-monitor     Do not plot distributions during learning')
        print('--precompute     Precompute some moments when rotating. May '
              'speed up or slow down.')
        sys.exit(2)

    kwargs = {}
    for opt, arg in opts:
        if opt == "--no-rotation":
            kwargs["rotate"] = False
        elif opt == "--maxiter":
            kwargs["maxiter"] = int(arg)
        elif opt == "--debug":
            kwargs["debug"] = True
        elif opt == "--precompute":
            kwargs["precompute"] = True
        elif opt == "--seed":
            kwargs["seed"] = int(arg)
        elif opt in ("--m",):
            kwargs["M"] = int(arg)
        elif opt in ("--n",):
            kwargs["N"] = int(arg)
        elif opt in ("--d",):
            kwargs["D"] = int(arg)
        elif opt in ("--no-plot"):
            kwargs["plot"] = False
        elif opt in ("--no-monitor"):
            kwargs["monitor"] = False
        else:
            raise ValueError("Unhandled option given")

    demo(**kwargs)
    plt.show()