File: lssm_sd.py

package info (click to toggle)
python-bayespy 0.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,132 kB
  • sloc: python: 22,402; makefile: 156
file content (337 lines) | stat: -rw-r--r-- 10,745 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
################################################################################
# Copyright (C) 2014 Jaakko Luttinen
#
# This file is licensed under the MIT License.
################################################################################


"""
Demonstrate the linear state-space model with switching dynamics.

The model differs from the classical linear state-space model in that it has a
set of state dynamics matrices of which one is used at each time instance.  A
hidden Markov model is used to select the dynamics matrix.

Some functions in this module are re-usable:
  * ``model`` can be used to construct the LSSM with switching dynamics.
  * ``infer`` can be used to apply the model to given data.
"""

import numpy as np
import matplotlib.pyplot as plt

from bayespy.nodes import (GaussianARD,
                           SwitchingGaussianMarkovChain,
                           CategoricalMarkovChain,
                           Dirichlet,
                           Mixture,
                           Gamma,
                           SumMultiply)

from bayespy.inference.vmp.vmp import VB
from bayespy.inference.vmp import transformations

import bayespy.plot as bpplt


def model(M=20, N=100, D=10, K=3):
    """
    Construct the linear state-space model with switching dynamics.
    """

    #
    # Switching dynamics (HMM)
    #

    # Prior for initial state probabilities
    rho = Dirichlet(1e-3*np.ones(K),
                    name='rho')

    # Prior for state transition probabilities
    V = Dirichlet(1e-3*np.ones(K),
                  plates=(K,),
                  name='V')
    v = 10*np.identity(K) + 1*np.ones((K,K))
    v /= np.sum(v, axis=-1, keepdims=True)
    V.initialize_from_value(v)

    # Hidden states (with unknown initial state probabilities and state
    # transition probabilities)
    Z = CategoricalMarkovChain(rho, V,
                               states=N-1,
                               name='Z',
                               plotter=bpplt.CategoricalMarkovChainPlotter(),
                               initialize=False)
    Z.u[0] = np.random.dirichlet(np.ones(K))
    Z.u[1] = np.reshape(np.random.dirichlet(0.5*np.ones(K*K), size=(N-2)),
                        (N-2, K, K))

    #
    # Linear state-space models
    #

    # Dynamics matrix with ARD
    # (K,D) x ()
    alpha = Gamma(1e-5,
                  1e-5,
                  plates=(K,1,D),
                  name='alpha')
    # (K,1,1,D) x (D)
    A = GaussianARD(0,
                    alpha,
                    shape=(D,),
                    plates=(K,D),
                    name='A',
                    plotter=bpplt.GaussianHintonPlotter())
    A.initialize_from_value(np.identity(D)*np.ones((K,D,D))
                            + 0.1*np.random.randn(K,D,D))

    # Latent states with dynamics
    # (K,1) x (N,D)
    X = SwitchingGaussianMarkovChain(np.zeros(D),         # mean of x0
                                     1e-3*np.identity(D), # prec of x0
                                     A,                   # dynamics
                                     Z,                   # dynamics selection
                                     np.ones(D),          # innovation
                                     n=N,                 # time instances
                                     name='X',
                                     plotter=bpplt.GaussianMarkovChainPlotter())
    X.initialize_from_value(10*np.random.randn(N,D))

    # Mixing matrix from latent space to observation space using ARD
    # (K,1,1,D) x ()
    gamma = Gamma(1e-5,
                  1e-5,
                  plates=(D,),
                  name='gamma')
    # (K,M,1) x (D)
    C = GaussianARD(0,
                    gamma,
                    shape=(D,),
                    plates=(M,1),
                    name='C',
                    plotter=bpplt.GaussianHintonPlotter(rows=-3,cols=-1))
    C.initialize_from_value(np.random.randn(M,1,D))

    # Underlying noiseless function
    # (K,M,N) x ()
    F = SumMultiply('i,i', 
                    C, 
                    X,
                    name='F')
    
    #
    # Mixing the models
    #

    # Observation noise
    tau = Gamma(1e-5,
                1e-5,
                name='tau')
    tau.initialize_from_value(1e2)

    # Emission/observation distribution
    Y = GaussianARD(F, tau,
                    name='Y')

    Q = VB(Y, F,
           Z, rho, V,
           C, gamma, X, A, alpha,
           tau)

    return Q


def infer(y, D, K, rotate=False, debug=False, maxiter=100, mask=True,
          plot_C=True, monitor=False, update_hyper=0, autosave=None):
    
    """
    Apply LSSM with switching dynamics to the given data.
    """
    
    (M, N) = np.shape(y)

    # Construct model
    Q = model(M=M, K=K, N=N, D=D)
    if not plot_C:
        Q['C'].set_plotter(None)

    if autosave is not None:
        Q.set_autosave(autosave, iterations=10)

    Q['Y'].observe(y, mask=mask)

    # Set up rotation speed-up
    if rotate:
        raise NotImplementedError()
        # Initial rotate the D-dimensional state space (X, A, C)
        # Do not update hyperparameters
        rotA_init = transformations.RotateGaussianARD(Q['A'])
        rotX_init = transformations.RotateSwitchingMarkovChain(Q['X'],
                                                               Q['A'],
                                                               Q['Z'],
                                                               rotA_init)
        rotC_init = transformations.RotateGaussianARD(Q['C'])
        R_init = transformations.RotationOptimizer(rotX_init, rotC_init, D)
        # Rotate the D-dimensional state space (X, A, C)
        rotA = transformations.RotateGaussianARD(Q['A'], 
                                                 Q['alpha'])
        rotX = transformations.RotateSwitchingMarkovChain(Q['X'], 
                                                          Q['A'],
                                                          Q['Z'],
                                                          rotA)
        rotC = transformations.RotateGaussianARD(Q['C'],
                                                 Q['gamma'])
        R = transformations.RotationOptimizer(rotX, rotC, D)
        if debug:
            rotate_kwargs = {'maxiter': 10,
                             'check_bound': True,
                             'check_gradient': True}
        else:
            rotate_kwargs = {'maxiter': 10}

    # Run inference
    if monitor:
        Q.plot()
    for n in range(maxiter):
        if n < update_hyper:
            Q.update('X', 'C', 'A', 'tau', 'Z', plot=monitor)
            if rotate:
                R_init.rotate(**rotate_kwargs)
        else:
            Q.update(plot=monitor)
            if rotate:
                R.rotate(**rotate_kwargs)

    return Q


def simulate_data(N):
    """
    Generate time-series data with switching dynamics.
    """

    # Two states: 1) oscillation, 2) random walk
    w1 = 0.02 * 2*np.pi
    A = [ [[np.cos(w1), -np.sin(w1)],
           [np.sin(w1),  np.cos(w1)]],
          [[        1.0,         0.0],
           [        0.0,         0.0]] ]
    C = [[1.0, 0.0]]

    # State switching probabilities
    q = 0.993        # probability to stay in the same state
    r = (1-q)/(2-1)  # probability to switch
    P = q*np.identity(2) + r*(np.ones((2,2))-np.identity(2))

    X = np.zeros((N, 2))
    Z = np.zeros(N)
    Y = np.zeros(N)
    F = np.zeros(N)
    z = np.random.randint(2)
    x = np.random.randn(2)
    Z[0] = z
    X[0,:] = x
    for n in range(1,N):
        x = np.dot(A[z], x) + np.random.randn(2)
        f = np.dot(C, x)
        y = f + 5*np.random.randn()
        z = np.random.choice(2, p=P[z])

        Z[n] = z
        X[n,:] = x
        Y[n] = y
        F[n] = f

    Y = Y[None,:]

    return (Y, F)
    

@bpplt.interactive
def demo(N=1000, maxiter=100, D=3, K=2, seed=42, plot=True, debug=False,
        rotate=False, monitor=True):
    """
    Run the demo for linear state-space model with switching dynamics.
    """

    # Use deterministic random numbers
    if seed is not None:
        np.random.seed(seed)

    # Generate data
    (Y, F) = simulate_data(N)

    # Plot observations
    if plot:
        plt.figure()
        bpplt.timeseries(F, linestyle='-', color='b')
        bpplt.timeseries(Y, linestyle='None', color='r', marker='x')

    # Apply the linear state-space model with switching dynamics
    Q = infer(Y, D, K, 
              debug=debug,
              maxiter=maxiter,
              monitor=monitor,
              rotate=rotate,
              update_hyper=5)

    # Show results
    if plot:
        Q.plot()

    return
    

if __name__ == '__main__':
    import sys, getopt, os
    try:
        opts, args = getopt.getopt(sys.argv[1:],
                                   "",
                                   ["n=",
                                    "d=",
                                    "k=",
                                    "seed=",
                                    "debug",
                                    "no-rotation",
                                    "no-monitor",
                                    "no-plot",
                                    "maxiter="])
    except getopt.GetoptError:
        print('python lssm_sd.py <options>')
        print('--n=<INT>        Number of data vectors')
        print('--d=<INT>        Latent space dimensionality')
        print('--k=<INT>        Number of mixed models')
        print('--maxiter=<INT>  Maximum number of VB iterations')
        print('--seed=<INT>     Seed (integer) for the random number generator')
        print('--no-rotation    Do not peform rotation speed ups')
        print('--no-plot        Do not plot results')
        print('--no-monitor     Do not plot distributions during VB learning')
        print('--debug          Check that the rotations are implemented correctly')
        sys.exit(2)

    kwargs = {}
    for opt, arg in opts:
        if opt == "--maxiter":
            kwargs["maxiter"] = int(arg)
        elif opt == "--d":
            kwargs["D"] = int(arg)
        elif opt == "--k":
            kwargs["K"] = int(arg)
        elif opt == "--seed":
            kwargs["seed"] = int(arg)
        elif opt == "--no-rotation":
            kwargs["rotate"] = False
        elif opt == "--no-monitor":
            kwargs["monitor"] = False
        elif opt == "--no-plot":
            kwargs["plot"] = False
        elif opt == "--debug":
            kwargs["debug"] = True
        elif opt in ("--n",):
            kwargs["N"] = int(arg)
        else:
            raise ValueError("Unhandled option given")

    demo(**kwargs)
    plt.show()