1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
|
################################################################################
# Copyright (C) 2013-2014 Jaakko Luttinen
#
# This file is licensed under the MIT License.
################################################################################
"""
Demonstrate the linear state-space model with time-varying dynamics.
The observation is 1-D signal with changing frequency. The frequency oscillates
so it can be learnt too. Missing values are used to create a few gaps in the
data so the task is to reconstruct the gaps.
For reference, see the following publication:
(TODO)
Some functions in this module are re-usable:
* ``model`` can be used to construct the LSSM with switching dynamics.
* ``infer`` can be used to apply the model to given data.
"""
import numpy as np
import scipy
import matplotlib.pyplot as plt
from bayespy.nodes import (GaussianMarkovChain,
VaryingGaussianMarkovChain,
GaussianARD,
Gamma,
SumMultiply)
from bayespy.utils import misc
from bayespy.utils import random
from bayespy.inference.vmp.vmp import VB
from bayespy.inference.vmp import transformations
from bayespy.inference.vmp.nodes.gaussian import GaussianMoments
import bayespy.plot as bpplt
def model(M, N, D, K):
"""
Construct the linear state-space model with time-varying dynamics
For reference, see the following publication:
(TODO)
"""
#
# The model block for the latent mixing weight process
#
# Dynamics matrix with ARD
# beta : (K) x ()
beta = Gamma(1e-5,
1e-5,
plates=(K,),
name='beta')
# B : (K) x (K)
B = GaussianARD(np.identity(K),
beta,
shape=(K,),
plates=(K,),
name='B',
plotter=bpplt.GaussianHintonPlotter(rows=0,
cols=1,
scale=0),
initialize=False)
B.initialize_from_value(np.identity(K))
# Mixing weight process, that is, the weights in the linear combination of
# state dynamics matrices
# S : () x (N,K)
S = GaussianMarkovChain(np.ones(K),
1e-6*np.identity(K),
B,
np.ones(K),
n=N,
name='S',
plotter=bpplt.GaussianMarkovChainPlotter(scale=2),
initialize=False)
s = 10*np.random.randn(N,K)
s[:,0] = 10
S.initialize_from_value(s)
#
# The model block for the latent states
#
# Projection matrix of the dynamics matrix
# alpha : (K) x ()
alpha = Gamma(1e-5,
1e-5,
plates=(D,K),
name='alpha')
alpha.initialize_from_value(1*np.ones((D,K)))
# A : (D) x (D,K)
A = GaussianARD(0,
alpha,
shape=(D,K),
plates=(D,),
name='A',
plotter=bpplt.GaussianHintonPlotter(rows=0,
cols=1,
scale=0),
initialize=False)
# Initialize S and A such that A*S is almost an identity matrix
a = np.zeros((D,D,K))
a[np.arange(D),np.arange(D),np.zeros(D,dtype=int)] = 1
a[:,:,0] = np.identity(D) / s[0,0]
a[:,:,1:] = 0.1/s[0,0]*np.random.randn(D,D,K-1)
A.initialize_from_value(a)
# Latent states with dynamics
# X : () x (N,D)
X = VaryingGaussianMarkovChain(np.zeros(D), # mean of x0
1e-3*np.identity(D), # prec of x0
A, # dynamics matrices
S._ensure_moments(S, GaussianMoments, ndim=1)[1:], # temporal weights
np.ones(D), # innovation
n=N, # time instances
name='X',
plotter=bpplt.GaussianMarkovChainPlotter(scale=2),
initialize=False)
X.initialize_from_value(np.random.randn(N,D))
#
# The model block for observations
#
# Mixing matrix from latent space to observation space using ARD
# gamma : (D) x ()
gamma = Gamma(1e-5,
1e-5,
plates=(D,),
name='gamma')
gamma.initialize_from_value(1e-2*np.ones(D))
# C : (M,1) x (D)
C = GaussianARD(0,
gamma,
shape=(D,),
plates=(M,1),
name='C',
plotter=bpplt.GaussianHintonPlotter(rows=0,
cols=2,
scale=0))
C.initialize_from_value(np.random.randn(M,1,D))
# Noiseless process
# F : (M,N) x ()
F = SumMultiply('d,d',
C,
X,
name='F')
# Observation noise
# tau : () x ()
tau = Gamma(1e-5,
1e-5,
name='tau')
tau.initialize_from_value(1e2)
# Observations
# Y: (M,N) x ()
Y = GaussianARD(F,
tau,
name='Y')
# Construct inference machine
Q = VB(Y, F, C, gamma, X, A, alpha, tau, S, B, beta)
return Q
def infer(y, D, K,
mask=True,
maxiter=100,
rotate=False,
debug=False,
precompute=False,
update_hyper=0,
start_rotating=0,
start_rotating_weights=0,
plot_C=True,
monitor=True,
autosave=None):
"""
Run VB inference for linear state-space model with time-varying dynamics.
"""
y = misc.atleast_nd(y, 2)
(M, N) = np.shape(y)
# Construct the model
Q = model(M, N, D, K)
if not plot_C:
Q['C'].set_plotter(None)
if autosave is not None:
Q.set_autosave(autosave, iterations=10)
# Observe data
Q['Y'].observe(y, mask=mask)
# Set up rotation speed-up
if rotate:
raise NotImplementedError()
# Initial rotate the D-dimensional state space (X, A, C)
# Does not update hyperparameters
rotA_init = transformations.RotateGaussianARD(Q['A'],
axis=0,
precompute=precompute)
rotX_init = transformations.RotateVaryingMarkovChain(Q['X'],
Q['A'],
Q['S']._convert(GaussianMoments)[...,1:,None],
rotA_init)
rotC_init = transformations.RotateGaussianARD(Q['C'],
axis=0,
precompute=precompute)
R_X_init = transformations.RotationOptimizer(rotX_init, rotC_init, D)
# Rotate the D-dimensional state space (X, A, C)
rotA = transformations.RotateGaussianARD(Q['A'],
Q['alpha'],
axis=0,
precompute=precompute)
rotX = transformations.RotateVaryingMarkovChain(Q['X'],
Q['A'],
Q['S']._convert(GaussianMoments)[...,1:,None],
rotA)
rotC = transformations.RotateGaussianARD(Q['C'],
Q['gamma'],
axis=0,
precompute=precompute)
R_X = transformations.RotationOptimizer(rotX, rotC, D)
# Rotate the K-dimensional latent dynamics space (S, A, C)
rotB = transformations.RotateGaussianARD(Q['B'],
Q['beta'],
precompute=precompute)
rotS = transformations.RotateGaussianMarkovChain(Q['S'], rotB)
rotA = transformations.RotateGaussianARD(Q['A'],
Q['alpha'],
axis=-1,
precompute=precompute)
R_S = transformations.RotationOptimizer(rotS, rotA, K)
if debug:
rotate_kwargs = {'maxiter': 10,
'check_bound': True,
'check_gradient': True}
else:
rotate_kwargs = {'maxiter': 10}
# Plot initial distributions
if monitor:
Q.plot()
# Run inference using rotations
for ind in range(maxiter):
if ind < update_hyper:
# It might be a good idea to learn the lower level nodes a bit
# before starting to learn the upper level nodes.
Q.update('X', 'C', 'A', 'tau', plot=monitor)
if rotate and ind >= start_rotating:
# Use the rotation which does not update alpha nor beta
R_X_init.rotate(**rotate_kwargs)
else:
Q.update(plot=monitor)
if rotate and ind >= start_rotating:
# It might be a good idea to not rotate immediately because it
# might lead to pruning out components too efficiently before
# even estimating them roughly
R_X.rotate(**rotate_kwargs)
if ind >= start_rotating_weights:
R_S.rotate(**rotate_kwargs)
# Return the posterior approximation
return Q
def simulate_data(N):
"""
Generate a signal with changing frequency
"""
t = np.arange(N)
a = 0.1 * 2*np.pi # base frequency
b = 0.01 * 2*np.pi # frequency of the frequency change
c = 8 # magnitude of the frequency change
f = np.sin( a * (t + c*np.sin(b*t)) )
y = f + 0.1*np.random.randn(N)
return (y, f)
@bpplt.interactive
def demo(N=1000, D=5, K=4, seed=42, maxiter=200, rotate=False, debug=False,
precompute=False, plot=True):
# Seed for random number generator
if seed is not None:
np.random.seed(seed)
# Create data
(y, f) = simulate_data(N)
# Create some gaps
mask_gaps = misc.trues(N)
for m in range(100, N, 140):
start = m
end = min(m+15, N-1)
mask_gaps[start:end] = False
# Randomly missing values
mask_random = np.logical_or(random.mask(N, p=0.8),
np.logical_not(mask_gaps))
# Remove the observations
mask = np.logical_and(mask_gaps, mask_random)
y[~mask] = np.nan # BayesPy doesn't require NaNs, they're just for plotting.
# Add row axes
y = y[None,...]
f = f[None,...]
mask = mask[None,...]
mask_gaps = mask_gaps[None,...]
mask_random = mask_random[None,...]
# Run the method
Q = infer(y, D, K,
mask=mask,
maxiter=maxiter,
rotate=rotate,
debug=debug,
precompute=precompute,
update_hyper=10,
start_rotating_weights=20,
monitor=True)
if plot:
# Plot observations
plt.figure()
bpplt.timeseries_normal(Q['F'], scale=2)
bpplt.timeseries(f, linestyle='-', color='b')
bpplt.timeseries(y, linestyle='None', color='r', marker='.')
plt.ylim([-2, 2])
# Plot latent space
Q.plot('X')
# Plot mixing weight space
Q.plot('S')
# Compute RMSE
rmse_random = misc.rmse(Q['Y'].get_moments()[0][~mask_random],
f[~mask_random])
rmse_gaps = misc.rmse(Q['Y'].get_moments()[0][~mask_gaps],
f[~mask_gaps])
print("RMSE for randomly missing values: %f" % rmse_random)
print("RMSE for gap values: %f" % rmse_gaps)
if __name__ == '__main__':
import sys, getopt, os
try:
opts, args = getopt.getopt(sys.argv[1:],
"",
[
"n=",
"d=",
"k=",
"seed=",
"maxiter=",
"debug",
"precompute",
"no-plot",
"no-rotation"])
except getopt.GetoptError:
print('python lssm_tvd.py <options>')
print('--n=<INT> Number of data vectors')
print('--d=<INT> Dimensionality of the latent vectors in the model')
print('--k=<INT> Dimensionality of the latent mixing weights')
print('--no-rotation Do not apply speed-up rotations')
print('--maxiter=<INT> Maximum number of VB iterations')
print('--seed=<INT> Seed (integer) for the random number generator')
print('--debug Check that the rotations are implemented correctly')
print('--no-plot Do not plot results')
print('--precompute Precompute some moments when rotating. May '
'speed up or slow down.')
sys.exit(2)
kwargs = {}
for opt, arg in opts:
if opt == "--no-rotation":
kwargs["rotate"] = False
elif opt == "--maxiter":
kwargs["maxiter"] = int(arg)
elif opt == "--debug":
kwargs["debug"] = True
elif opt == "--precompute":
kwargs["precompute"] = True
elif opt == "--seed":
kwargs["seed"] = int(arg)
elif opt == "--n":
kwargs["N"] = int(arg)
elif opt == "--d":
kwargs["D"] = int(arg)
elif opt == "--k":
if int(arg) == 0:
kwargs["K"] = None
else:
kwargs["K"] = int(arg)
elif opt == "--no-plot":
kwargs["plot"] = False
else:
raise ValueError("Unhandled argument given")
demo(**kwargs)
plt.show()
|