File: stochastic_inference.py

package info (click to toggle)
python-bayespy 0.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,132 kB
  • sloc: python: 22,402; makefile: 156
file content (180 lines) | stat: -rw-r--r-- 5,013 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
################################################################################
# Copyright (C) 2015 Jaakko Luttinen
#
# This file is licensed under the MIT License.
################################################################################


"""
Stochastic variational inference on mixture of Gaussians

Stochastic variational inference is a scalable variational Bayesian
learning method which utilizes stochastic gradient.  For details, see
:cite:`Hoffman:2013`.
"""


import numpy as np
import scipy

import matplotlib.pyplot as plt
import bayespy.plot as myplt

from bayespy.utils import misc
from bayespy.utils import random
from bayespy.nodes import Gaussian, Categorical, Mixture, Dirichlet

from bayespy.inference.vmp.vmp import VB
from bayespy.inference.vmp import transformations

import bayespy.plot as bpplt

from bayespy.demos import pca


def run(N=100000, N_batch=50, seed=42, maxiter=100, plot=True):
    """
    Run deterministic annealing demo for 1-D Gaussian mixture.
    """

    if seed is not None:
        np.random.seed(seed)

    # Number of clusters in the model
    K = 20

    # Dimensionality of the data
    D = 5

    # Generate data
    K_true = 10
    spread = 5
    means = spread * np.random.randn(K_true, D)
    z = random.categorical(np.ones(K_true), size=N)
    data = np.empty((N,D))
    for n in range(N):
        data[n] = means[z[n]] + np.random.randn(D)

    #
    # Standard VB-EM algorithm
    #

    # Full model
    mu = Gaussian(np.zeros(D), np.identity(D),
                  plates=(K,),
                  name='means')
    alpha = Dirichlet(np.ones(K),
                      name='class probabilities')
    Z = Categorical(alpha,
                    plates=(N,),
                    name='classes')
    Y = Mixture(Z, Gaussian, mu, np.identity(D),
                name='observations')

    # Break symmetry with random initialization of the means
    mu.initialize_from_random()

    # Put the data in
    Y.observe(data)

    # Run inference
    Q = VB(Y, Z, mu, alpha)
    Q.save(mu)
    Q.update(repeat=maxiter)
    if plot:
        bpplt.pyplot.plot(np.cumsum(Q.cputime), Q.L, 'k-')
    max_cputime = np.sum(Q.cputime[~np.isnan(Q.cputime)])


    #
    # Stochastic variational inference
    #

    # Construct smaller model (size of the mini-batch)
    mu = Gaussian(np.zeros(D), np.identity(D),
                  plates=(K,),
                  name='means')
    alpha = Dirichlet(np.ones(K),
                      name='class probabilities')
    Z = Categorical(alpha,
                    plates=(N_batch,),
                    plates_multiplier=(N/N_batch,),
                    name='classes')
    Y = Mixture(Z, Gaussian, mu, np.identity(D),
                name='observations')

    # Break symmetry with random initialization of the means
    mu.initialize_from_random()

    # Inference engine
    Q = VB(Y, Z, mu, alpha, autosave_filename=Q.autosave_filename)
    Q.load(mu)

    # Because using mini-batches, messages need to be multiplied appropriately
    print("Stochastic variational inference...")
    Q.ignore_bound_checks = True

    maxiter *= int(N/N_batch)
    delay = 1
    forgetting_rate = 0.7
    for n in range(maxiter):

        # Observe a mini-batch
        subset = np.random.choice(N, N_batch)
        Y.observe(data[subset,:])

        # Learn intermediate variables
        Q.update(Z)

        # Set step length
        step = (n + delay) ** (-forgetting_rate)

        # Stochastic gradient for the global variables
        Q.gradient_step(mu, alpha, scale=step)

        if np.sum(Q.cputime[:n]) > max_cputime:
            break
    
    if plot:
        bpplt.pyplot.plot(np.cumsum(Q.cputime), Q.L, 'r:')

        bpplt.pyplot.xlabel('CPU time (in seconds)')
        bpplt.pyplot.ylabel('VB lower bound')
        bpplt.pyplot.legend(['VB-EM', 'Stochastic inference'], loc='lower right')
        bpplt.pyplot.title('VB for Gaussian mixture model')

    return


if __name__ == '__main__':
    import sys, getopt, os
    try:
        opts, args = getopt.getopt(sys.argv[1:],
                                   "",
                                   ["n=",
                                    "batch=",
                                    "seed=",
                                    "maxiter="])
    except getopt.GetoptError:
        print('python stochastic_inference.py <options>')
        print('--n=<INT>        Number of data points')
        print('--batch=<INT>    Mini-batch size')
        print('--maxiter=<INT>  Maximum number of VB iterations')
        print('--seed=<INT>     Seed (integer) for the random number generator')
        sys.exit(2)

    kwargs = {}
    for opt, arg in opts:
        if opt == "--maxiter":
            kwargs["maxiter"] = int(arg)
        elif opt == "--seed":
            kwargs["seed"] = int(arg)
        elif opt in ("--n",):
            kwargs["N"] = int(arg)
        elif opt in ("--batch",):
            kwargs["N_batch"] = int(arg)

    run(**kwargs)

    plt.show()