1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
################################################################################
# Copyright (C) 2015 Jaakko Luttinen
#
# This file is licensed under the MIT License.
################################################################################
"""
Stochastic variational inference on mixture of Gaussians
Stochastic variational inference is a scalable variational Bayesian
learning method which utilizes stochastic gradient. For details, see
:cite:`Hoffman:2013`.
"""
import numpy as np
import scipy
import matplotlib.pyplot as plt
import bayespy.plot as myplt
from bayespy.utils import misc
from bayespy.utils import random
from bayespy.nodes import Gaussian, Categorical, Mixture, Dirichlet
from bayespy.inference.vmp.vmp import VB
from bayespy.inference.vmp import transformations
import bayespy.plot as bpplt
from bayespy.demos import pca
def run(N=100000, N_batch=50, seed=42, maxiter=100, plot=True):
"""
Run deterministic annealing demo for 1-D Gaussian mixture.
"""
if seed is not None:
np.random.seed(seed)
# Number of clusters in the model
K = 20
# Dimensionality of the data
D = 5
# Generate data
K_true = 10
spread = 5
means = spread * np.random.randn(K_true, D)
z = random.categorical(np.ones(K_true), size=N)
data = np.empty((N,D))
for n in range(N):
data[n] = means[z[n]] + np.random.randn(D)
#
# Standard VB-EM algorithm
#
# Full model
mu = Gaussian(np.zeros(D), np.identity(D),
plates=(K,),
name='means')
alpha = Dirichlet(np.ones(K),
name='class probabilities')
Z = Categorical(alpha,
plates=(N,),
name='classes')
Y = Mixture(Z, Gaussian, mu, np.identity(D),
name='observations')
# Break symmetry with random initialization of the means
mu.initialize_from_random()
# Put the data in
Y.observe(data)
# Run inference
Q = VB(Y, Z, mu, alpha)
Q.save(mu)
Q.update(repeat=maxiter)
if plot:
bpplt.pyplot.plot(np.cumsum(Q.cputime), Q.L, 'k-')
max_cputime = np.sum(Q.cputime[~np.isnan(Q.cputime)])
#
# Stochastic variational inference
#
# Construct smaller model (size of the mini-batch)
mu = Gaussian(np.zeros(D), np.identity(D),
plates=(K,),
name='means')
alpha = Dirichlet(np.ones(K),
name='class probabilities')
Z = Categorical(alpha,
plates=(N_batch,),
plates_multiplier=(N/N_batch,),
name='classes')
Y = Mixture(Z, Gaussian, mu, np.identity(D),
name='observations')
# Break symmetry with random initialization of the means
mu.initialize_from_random()
# Inference engine
Q = VB(Y, Z, mu, alpha, autosave_filename=Q.autosave_filename)
Q.load(mu)
# Because using mini-batches, messages need to be multiplied appropriately
print("Stochastic variational inference...")
Q.ignore_bound_checks = True
maxiter *= int(N/N_batch)
delay = 1
forgetting_rate = 0.7
for n in range(maxiter):
# Observe a mini-batch
subset = np.random.choice(N, N_batch)
Y.observe(data[subset,:])
# Learn intermediate variables
Q.update(Z)
# Set step length
step = (n + delay) ** (-forgetting_rate)
# Stochastic gradient for the global variables
Q.gradient_step(mu, alpha, scale=step)
if np.sum(Q.cputime[:n]) > max_cputime:
break
if plot:
bpplt.pyplot.plot(np.cumsum(Q.cputime), Q.L, 'r:')
bpplt.pyplot.xlabel('CPU time (in seconds)')
bpplt.pyplot.ylabel('VB lower bound')
bpplt.pyplot.legend(['VB-EM', 'Stochastic inference'], loc='lower right')
bpplt.pyplot.title('VB for Gaussian mixture model')
return
if __name__ == '__main__':
import sys, getopt, os
try:
opts, args = getopt.getopt(sys.argv[1:],
"",
["n=",
"batch=",
"seed=",
"maxiter="])
except getopt.GetoptError:
print('python stochastic_inference.py <options>')
print('--n=<INT> Number of data points')
print('--batch=<INT> Mini-batch size')
print('--maxiter=<INT> Maximum number of VB iterations')
print('--seed=<INT> Seed (integer) for the random number generator')
sys.exit(2)
kwargs = {}
for opt, arg in opts:
if opt == "--maxiter":
kwargs["maxiter"] = int(arg)
elif opt == "--seed":
kwargs["seed"] = int(arg)
elif opt in ("--n",):
kwargs["N"] = int(arg)
elif opt in ("--batch",):
kwargs["N_batch"] = int(arg)
run(**kwargs)
plt.show()
|