1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
################################################################################
# Copyright (C) 2014 Jaakko Luttinen
#
# This file is licensed under the MIT License.
################################################################################
"""
A module for the Bernoulli distribution node
"""
import numpy as np
from .binomial import (BinomialMoments,
BinomialDistribution)
from .expfamily import ExponentialFamily
from .beta import BetaMoments
from .node import Moments
class BernoulliMoments(BinomialMoments):
"""
Class for the moments of Bernoulli variables.
"""
def __init__(self):
super().__init__(1)
class BernoulliDistribution(BinomialDistribution):
"""
Class for the VMP formulas of Bernoulli variables.
"""
def __init__(self):
super().__init__(1)
class Bernoulli(ExponentialFamily):
r"""
Node for Bernoulli random variables.
The node models a binary random variable :math:`z \in \{0,1\}` with prior
probability :math:`p \in [0,1]` for value one:
.. math::
z \sim \mathrm{Bernoulli}(p).
Parameters
----------
p : beta-like node
Probability of a successful trial
Examples
--------
>>> import warnings
>>> warnings.filterwarnings('ignore', category=RuntimeWarning)
>>> from bayespy.nodes import Bernoulli, Beta
>>> p = Beta([1e-3, 1e-3])
>>> z = Bernoulli(p, plates=(10,))
>>> z.observe([0, 1, 1, 1, 0, 1, 1, 1, 0, 1])
>>> p.update()
>>> import bayespy.plot as bpplt
>>> import numpy as np
>>> bpplt.pdf(p, np.linspace(0, 1, num=100))
[<matplotlib.lines.Line2D object at 0x...>]
"""
_moments = BernoulliMoments()
_distribution = BernoulliDistribution()
def __init__(self, p, **kwargs):
"""
Create Bernoulli node.
"""
super().__init__(p, **kwargs)
@classmethod
def _constructor(cls, p, **kwargs):
"""
Constructs distribution and moments objects.
"""
p = cls._ensure_moments(p, BetaMoments)
parent_moments = (p._moments,)
parents = [p]
return ( parents,
kwargs,
( (), ),
cls._total_plates(kwargs.get('plates'),
cls._distribution.plates_from_parent(0, p.plates)),
cls._distribution,
cls._moments,
parent_moments)
def __str__(self):
"""
Print the distribution using standard parameterization.
"""
p = 1 / (1 + np.exp(-self.phi[0]))
return ("%s ~ Bernoulli(p)\n"
" p = \n"
"%s\n"
% (self.name, p))
from .deterministic import Deterministic
from .categorical import Categorical, CategoricalMoments
class CategoricalToBernoulli(Deterministic):
"""
A node for converting 2-class categorical moments to Bernoulli moments.
"""
def __init__(self, Z, **kwargs):
"""
Create a categorical MC moments to categorical moments conversion node.
"""
# Convert parent to proper type. Z must be a node.
if not isinstance(Z._moments, CategoricalMoments):
raise ValueError("Input node must be categorical")
K = Z.dims[0][-1]
if K != 2:
raise Moments.NoConverterError("Only 2-class categorical can be converted to "
"Bernoulli")
dims = ( (), )
self._moments = BernoulliMoments()
self._parent_moments = (CategoricalMoments(2),)
super().__init__(Z, dims=dims, **kwargs)
def _compute_moments(self, u_Z):
"""
Compute the moments given the moments of the parents.
"""
u0 = u_Z[0][...,0]
u = [u0]
return u
def _compute_message_to_parent(self, index, m, u_Z):
"""
Compute the message to a parent.
"""
if index == 0:
m0 = np.concatenate([m[0][...,None],
np.zeros(np.shape(m[0]))[...,None]],
axis=-1)
return [m0]
else:
raise ValueError("Incorrect parent index")
# Make use of the conversion node
CategoricalMoments.add_converter(BernoulliMoments,
CategoricalToBernoulli)
|