File: binomial.py

package info (click to toggle)
python-bayespy 0.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,132 kB
  • sloc: python: 22,402; makefile: 156
file content (246 lines) | stat: -rw-r--r-- 6,715 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
################################################################################
# Copyright (C) 2014 Jaakko Luttinen
#
# This file is licensed under the MIT License.
################################################################################


"""
A module for the binomial distribution node
"""

import numpy as np
import scipy.special as special

from .expfamily import (ExponentialFamily,
                        ExponentialFamilyDistribution,
                        useconstructor)

from .beta import BetaMoments

from .poisson import PoissonMoments

from .node import (Moments,
                   ensureparents)

from bayespy.utils import misc, random


class BinomialMoments(PoissonMoments):
    """
    Class for the moments of binomial variables
    """


    def __init__(self, N):
        self.N = N
        super().__init__()


    def compute_fixed_moments(self, x):
        """
        Compute the moments for a fixed value
        """
        # Make sure the values are integers in valid range
        x = np.asanyarray(x)
        if np.any(x > self.N):
            raise ValueError("Invalid count")
        return super().compute_fixed_moments()


    def compute_dims_from_values(self, x):
        """
        Return the shape of the moments for a fixed value.

        The realizations are scalars, thus the shape of the moment is ().
        """
        raise DeprecationWarning()
        return super().compute_dims_from_values()


class BinomialDistribution(ExponentialFamilyDistribution):
    """
    Class for the VMP formulas of binomial variables.
    """


    def __init__(self, N):
        N = np.asanyarray(N)
        if not misc.isinteger(N):
            raise ValueError("Number of trials must be integer")
        if np.any(N < 0):
            raise ValueError("Number of trials must be non-negative")
        self.N = np.asanyarray(N)
        super().__init__()


    def compute_message_to_parent(self, parent, index, u_self, u_p):
        """
        Compute the message to a parent node.
        """
        if index == 0:
            x = u_self[0][...,None]
            n = self.N[...,None]
            m0 = x*[1, -1] + n*[0, 1]
            m = [m0]
            return m
        else:
            raise ValueError("Incorrect parent index")


    def compute_phi_from_parents(self, u_p, mask=True):
        """
        Compute the natural parameter vector given parent moments.
        """
        logp0 = u_p[0][...,0]
        logp1 = u_p[0][...,1]
        phi0 = logp0 - logp1
        return [phi0]


    def compute_moments_and_cgf(self, phi, mask=True):
        """
        Compute the moments and :math:`g(\phi)`.
        """
        u0 = self.N / (1 + np.exp(-phi[0]))
        g = -self.N * np.log1p(np.exp(phi[0]))
        return ( [u0], g )


    def compute_cgf_from_parents(self, u_p):
        """
        Compute :math:`\mathrm{E}_{q(p)}[g(p)]`
        """
        logp0 = u_p[0][...,0]
        logp1 = u_p[0][...,1]
        return self.N * logp1


    def compute_fixed_moments_and_f(self, x, mask=True):
        """
        Compute the moments and :math:`f(x)` for a fixed value.
        """
        # Make sure the values are integers in valid range
        x = np.asanyarray(x)
        if not misc.isinteger(x):
            raise ValueError("Counts must be integer")
        if np.any(x < 0) or np.any(x > self.N):
            raise ValueError("Invalid count")
        # Now, the moments are just the counts
        u = [x]
        f = (special.gammaln(self.N+1) -
             special.gammaln(x+1) -
             special.gammaln(self.N-x+1))
        return (u, f)


    def random(self, *phi, plates=None):
        """
        Draw a random sample from the distribution.
        """
        p = random.logodds_to_probability(phi[0])
        return np.random.binomial(self.N, p, size=plates)

    def squeeze(self, axis):
        try:
            N_squeezed = np.squeeze(self.N, axis)
        except ValueError as err:
            raise ValueError(
                "The number of trials must be constant over a squeezed axis, "
                "so the corresponding array axis must be singleton. "
                "Cannot squeeze axis {0} from a binomial distribution "
                "because the number of trials arrays has shape {2}, so "
                "the given axis has length {1} != 1. ".format(
                    axis,
                    np.shape(self.N)[axis],
                    np.shape(self.N),
                )
            ) from err
        else:
            return BinomialDistribution(N_squeezed)


class Binomial(ExponentialFamily):
    r"""
    Node for binomial random variables.

    The node models the number of successes :math:`x \in \{0, \ldots, n\}` in
    :math:`n` trials with probability :math:`p` for success:

    .. math::

        x \sim \mathrm{Binomial}(n, p).

    Parameters
    ----------

    n : scalar or array

        Number of trials

    p : beta-like node or scalar or array

        Probability of a success in a trial

    Examples
    --------

    >>> import warnings
    >>> warnings.filterwarnings('ignore', category=RuntimeWarning)
    >>> from bayespy.nodes import Binomial, Beta
    >>> p = Beta([1e-3, 1e-3])
    >>> x = Binomial(10, p)
    >>> x.observe(7)
    >>> p.update()
    >>> import bayespy.plot as bpplt
    >>> import numpy as np
    >>> bpplt.pdf(p, np.linspace(0, 1, num=100))
    [<matplotlib.lines.Line2D object at 0x...>]

    See also
    --------

    Bernoulli, Multinomial, Beta
    """


    def __init__(self, n, p, **kwargs):
        """
        Create binomial node
        """
        super().__init__(n, p, **kwargs)


    @classmethod
    def _constructor(cls, n, p, **kwargs):
        """
        Constructs distribution and moments objects.
        """
        p = cls._ensure_moments(p, BetaMoments)
        parents = [p]
        moments = BinomialMoments(n)
        parent_moments = (p._moments,)
        distribution = BinomialDistribution(n)
        return ( parents,
                 kwargs,
                 ( (), ),
                 cls._total_plates(kwargs.get('plates'),
                                   distribution.plates_from_parent(0, p.plates),
                                   np.shape(n)),
                 distribution,
                 moments,
                 parent_moments)


    def __str__(self):
        """
        Print the distribution using standard parameterization.
        """
        p = 1 / (1 + np.exp(-self.phi[0]))
        n = self._distribution.N
        return ("%s ~ Binomial(n, p)\n"
                "  n = \n"
                "%s\n"
                "  p = \n"
                "%s\n"
                % (self.name, n, p))