File: categorical_markov_chain.py

package info (click to toggle)
python-bayespy 0.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,132 kB
  • sloc: python: 22,402; makefile: 156
file content (438 lines) | stat: -rw-r--r-- 14,073 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
################################################################################
# Copyright (C) 2014 Jaakko Luttinen
#
# This file is licensed under the MIT License.
################################################################################


"""
Module for the categorical Markov chain node.
"""

import numpy as np

from .deterministic import Deterministic
from .expfamily import (ExponentialFamily,
                        ExponentialFamilyDistribution,
                        useconstructor)
from .node import (Moments,
                   ensureparents)
from .categorical import CategoricalMoments
from .dirichlet import (Dirichlet,
                        DirichletMoments)

from bayespy.utils import misc, random

class CategoricalMarkovChainMoments(Moments):
    """
    Class for the moments of categorical Markov chain variables.
    """


    def __init__(self, categories, length):
        """
        Create moments object for categorical Markov chain variables.
        """
        self.categories = categories
        self.length = length
        self.dims = ( (categories,), (length-1, categories, categories) )
        return


    def compute_fixed_moments(self, x):
        """
        Compute the moments for a fixed value
        """

        # Check that x is valid
        x = np.asanyarray(x)
        if not misc.isinteger(x):
            raise ValueError("Values must be integers")
        if np.any(x < 0) or np.any(x >= self.categories):
            raise ValueError("Invalid category index")

        plates = np.shape(x)[:-1]

        u0_size = np.prod(plates, dtype=int)
        u0 = np.zeros((u0_size, self.categories))
        u0[(np.arange(u0_size), np.ravel(x[...,0]))] = 1.0

        us_size = u0_size * (self.length - 1)
        us = np.zeros((us_size, self.categories, self.categories))
        us[(np.arange(us_size), np.ravel(x[...,:-1]), np.ravel(x[...,1:]))] = 1.0

        return [
            np.reshape(u0, plates + (self.categories,)),
            np.reshape(us, plates + (self.length-1, self.categories, self.categories)),
        ]

    @classmethod
    def from_values(cls, x, categories):
        """
        Return the shape of the moments for a fixed value.
        """
        raise NotImplementedError("from_values not implemented "
                                  "for %s"
                                  % (self.__class__.__name__))


class CategoricalMarkovChainDistribution(ExponentialFamilyDistribution):
    """
    Class for the VMP formulas of categorical Markov chain variables.
    """


    def __init__(self, categories, states):
        """
        Create VMP formula node for a categorical variable

        `categories` is the total number of categories.
        `states` is the length of the chain.
        """
        self.K = categories
        self.N = states

    def compute_message_to_parent(self, parent, index, u, u_p0, u_P):
        """
        Compute the message to a parent node.
        """
        if index == 0:
            return [ u[0] ]
        elif index == 1:
            return [ u[1] ]
        else:
            raise ValueError("Parent index out of bounds")

    def compute_weights_to_parent(self, index, weights):
        """
        Maps the mask to the plates of a parent.
        """
        if index == 0:
            return weights
        elif index == 1:
            # Add plate axis for the time axis and row axis of the transition
            # matrix
            return np.asanyarray(weights)[...,None,None]
        else:
            raise ValueError("Parent index out of bounds")

    def compute_phi_from_parents(self, u_p0, u_P, mask=True):
        """
        Compute the natural parameter vector given parent moments.
        """
        phi0 = u_p0[0]
        phi1 = u_P[0] * np.ones((self.N-1,self.K,self.K))
        return [phi0, phi1]

    def compute_moments_and_cgf(self, phi, mask=True):
        """
        Compute the moments and :math:`g(\phi)`.
        """
        logp0 = phi[0]
        logP = phi[1]
        (z0, zz, cgf) = random.alpha_beta_recursion(logp0, logP)
        u = [z0, zz]
        return (u, cgf)

    def compute_cgf_from_parents(self, u_p0, u_P):
        """
        Compute :math:`\mathrm{E}_{q(p)}[g(p)]`
        """
        return 0

    def compute_fixed_moments_and_f(self, x, mask=True):
        """
        Compute the moments and :math:`f(x)` for a fixed value.
        """
        raise NotImplementedError()

    def plates_to_parent(self, index, plates):
        """
        Resolves the plate mapping to a parent.

        Given the plates of the node's moments, this method returns the plates
        that the message to a parent has for the parent's distribution.
        """
        if index == 0:
            return plates
        elif index == 1:
            return plates + (self.N-1, self.K)
        else:
            raise ValueError("Parent index out of bounds")

    def plates_from_parent(self, index, plates):
        """
        Resolve the plate mapping from a parent.

        Given the plates of a parent's moments, this method returns the plates
        that the moments has for this distribution.
        """
        if index == 0:
            return plates
        elif index == 1:
            return plates[:-2]
        else:
            raise ValueError("Parent index out of bounds")


    def random(self, *phi, plates=None):
        """
        Draw a random sample from the distribution.
        """
        # Convert natural parameters to transition probabilities
        p0 = np.exp(phi[0] - misc.logsumexp(phi[0],
                                            axis=-1,
                                            keepdims=True))
        P = np.exp(phi[1] - misc.logsumexp(phi[1],
                                           axis=-1,
                                           keepdims=True))
        # Explicit broadcasting
        P = P * np.ones(plates)[...,None,None,None]
        # Allocate memory
        Z = np.zeros(plates + (self.N,), dtype=np.int64)
        # Draw initial state
        Z[...,0] = random.categorical(p0, size=plates)
        # Create [0,1,2,...,len(plate_axis)] indices for each plate axis and
        # make them broadcast properly
        nplates = len(plates)
        plates_ind = [np.arange(plate)[(Ellipsis,)+(nplates-i-1)*(None,)]
                      for (i, plate) in enumerate(plates)]
        plates_ind = tuple(plates_ind)
        # Draw next states iteratively
        for n in range(self.N-1):
            # Select the transition probabilities for the current state but take
            # into account the plates.  This leads to complex NumPy
            # indexing.. :)
            time_ind = min(n, np.shape(P)[-3]-1)
            ind = plates_ind + (time_ind, Z[...,n], Ellipsis)
            p = P[ind]
            # Draw next state
            z = random.categorical(P[ind])
            Z[...,n+1] = z

        return Z


class CategoricalMarkovChain(ExponentialFamily):
    r"""
    Node for categorical Markov chain random variables.

    The node models a Markov chain which has a discrete set of K possible states
    and the next state depends only on the previous state and the state
    transition probabilities.  The graphical model is shown below:

    .. bayesnet::

       \tikzstyle{latent} += [minimum size=30pt];

       \node[latent] (x0) {$x_0$};
       \node[latent, right=of x0] (x1) {$x_1$};
       \node[right=of x1] (dots) {$\cdots$};
       \node[latent, right=of dots] (xn) {$x_{N-1}$};
       \edge {x0}{x1};
       \edge {x1}{dots};
       \edge {dots}{xn};

       \node[latent, above=of x0] (pi) {$\boldsymbol{\pi}$};
       \node[latent, above=of dots] (A) {$\mathbf{A}$};
       \edge {pi} {x0};
       \edge {A} {x1,dots,xn};

    where :math:`\boldsymbol{\pi}` contains the probabilities for the initial
    state and :math:`\mathbf{A}` is the state transition probability matrix.  It
    is possible to have :math:`\mathbf{A}` varying in time.

    .. math::

        p(x_0, \ldots, x_{N-1}) &= p(x_0) \prod^{N-1}_{n=1} p(x_n|x_{n-1}),

    where

    .. math::

        p(x_0=k) &= \pi_k, \quad \text{for } k \in \{0,\ldots,K-1\},
        \\
        p(x_n=j|x_{n-1}=i) &= a_{ij}^{(n-1)} \quad \text{for } n=1,\ldots,N-1,\,
        i\in\{1,\ldots,K-1\},\, j\in\{1,\ldots,K-1\}
        \\
        a_{ij}^{(n)} &= [\mathbf{A}_n]_{ij}

    This node can be used to construct hidden Markov models by using
    :class:`Mixture` for the emission distribution.

    Parameters
    ----------

    pi : Dirichlet-like node or (...,K)-array

        :math:`\boldsymbol{\pi}`, probabilities for the first
        state. :math:`K`-dimensional Dirichlet.

    A : Dirichlet-like node or (K,K)-array or (...,1,K,K)-array or (...,N-1,K,K)-array

        :math:`\mathbf{A}`, probabilities for state
        transitions. :math:`K`-dimensional Dirichlet with plates (K,) or
        (...,1,K) or (...,N-1,K).

    states : int, optional

        :math:`N`, the length of the chain.

    See also
    --------

    Categorical, Dirichlet, GaussianMarkovChain, Mixture,
    SwitchingGaussianMarkovChain
    """


    def __init__(self, pi, A, states=None, **kwargs):
        """
        Create categorical Markov chain
        """
        super().__init__(pi, A, states=states, **kwargs)


    @classmethod
    def _constructor(cls, p0, P, states=None, **kwargs):
        """
        Constructs distribution and moments objects.

        This method is called if useconstructor decorator is used for __init__.

        Becase the distribution and moments object depend on the number of
        categories, that is, they depend on the parent node, this method can be
        used to construct those objects.
        """

        p0 = cls._ensure_moments(p0, DirichletMoments)
        P = cls._ensure_moments(P, DirichletMoments)

        # Number of categories
        D = p0.dims[0][0]

        parent_moments = (p0._moments, P._moments)

        # Number of states
        if len(P.plates) < 2:
            if states is None:
                raise ValueError("Could not infer the length of the Markov "
                                 "chain")
            N = int(states)
        else:
            if P.plates[-2] == 1:
                if states is None:
                    N = 2
                else:
                    N = int(states)
            else:
                if states is not None and P.plates[-2]+1 != states:
                    raise ValueError("Given length of the Markov chain is "
                                     "inconsistent with the transition "
                                     "probability matrix")
                N = P.plates[-2] + 1

        if p0.dims != P.dims:
            raise ValueError("Initial state probability vector and state "
                             "transition probability matrix have different "
                             "size")

        if len(P.plates) < 1 or P.plates[-1] != D:
            raise ValueError("Transition probability matrix is not square")

        dims = ( (D,), (N-1,D,D) )

        parents = [p0, P]
        distribution = CategoricalMarkovChainDistribution(D, N)
        moments = CategoricalMarkovChainMoments(D, N)

        return (parents,
                kwargs,
                moments.dims,
                cls._total_plates(kwargs.get('plates'),
                                  distribution.plates_from_parent(0, p0.plates),
                                  distribution.plates_from_parent(1, P.plates)),
                distribution,
                moments,
                parent_moments)


class CategoricalMarkovChainToCategorical(Deterministic):
    """
    A node for converting categorical MC moments to categorical moments.
    """


    def __init__(self, Z, **kwargs):
        """
        Create a categorical MC moments to categorical moments conversion node.
        """
        # Convert parent to proper type. Z must be a node.
        Z = self._ensure_moments(Z, CategoricalMarkovChainMoments)
        K = Z.dims[0][-1]
        dims = ( (K,), )
        self._moments = CategoricalMoments(K)
        self._parent_moments = (Z._moments,)
        super().__init__(Z, dims=dims, **kwargs)


    def _compute_moments(self, u_Z):
        """
        Compute the moments given the moments of the parents.
        """
        # Add time axis to p0
        p0 = u_Z[0][...,None,:]
        # Sum joint probability arrays to marginal probability vectors
        zz = u_Z[1]
        p = np.sum(zz, axis=-2)

        # Broadcast p0 and p to same shape, except the time axis
        plates_p0 = np.shape(p0)[:-2]
        plates_p = np.shape(p)[:-2]
        shape = misc.broadcasted_shape(plates_p0, plates_p) + (1,1)
        p0 = p0 * np.ones(shape)
        p = p * np.ones(shape)

        # Concatenate
        P = np.concatenate((p0,p), axis=-2)

        return [P]

    def _compute_message_to_parent(self, index, m, u_Z):
        """
        Compute the message to a parent.
        """
        m0 = m[0][...,0,:]
        m1 = m[0][...,1:,None,:]
        return [m0, m1]


    def _compute_weights_to_parent(self, index, weights):
        """
        Compute the mask used for messages sent to a parent.
        """
        if index == 0:
            # "Sum" over the last axis
            # TODO/FIXME: Check this. BUG I THINK.
            return np.sum(weights, axis=-1)
        else:
            raise ValueError("Parent index out of bounds")


    def _plates_to_parent(self, index):
        if index == 0:
            return self.plates[:-1]
        else:
            raise ValueError("Parent index out of bounds")

    def _plates_from_parent(self, index):
        if index == 0:
            N = self.parents[0].dims[1][0]
            return self.parents[0].plates + (N+1,)
        else:
            raise ValueError("Parent index out of bounds")


# Make use of the conversion node
CategoricalMarkovChainMoments.add_converter(CategoricalMoments,
                                            CategoricalMarkovChainToCategorical)