File: deterministic.py

package info (click to toggle)
python-bayespy 0.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,132 kB
  • sloc: python: 22,402; makefile: 156
file content (318 lines) | stat: -rw-r--r-- 11,968 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
################################################################################
# Copyright (C) 2013-2014 Jaakko Luttinen
#
# This file is licensed under the MIT License.
################################################################################


import functools

import numpy as np

from bayespy.utils import misc

from .node import Node, Moments

class Deterministic(Node):
    """
    Base class for deterministic nodes.

    Sub-classes must implement:
    1. For implementing the deterministic function:
       _compute_moments(self, *u)
    2. One of the following options:
       a) Simple methods:
          _compute_message_to_parent(self, index, m, *u)
       b) More control with:
          _compute_message_and_mask_to_parent(self, index, m, *u)

    Sub-classes may need to re-implement:
    1. If they manipulate plates:
       _compute_weights_to_parent(index, mask)
       _compute_plates_to_parent(self, index, plates)
       _compute_plates_from_parent(self, index, plates)
    
    
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, plates=None, notify_parents=False, **kwargs)

    def _get_id_list(self):
        """
        Returns the stochastic ID list.

        This method is used to check that same stochastic nodes are not direct
        parents of a node several times. It is only valid if there are
        intermediate stochastic nodes.

        To put it another way: each ID corresponds to one factor q(..) in the
        posterior approximation. Different IDs mean different factors, thus they
        mean independence. The parents must have independent factors.

        Stochastic nodes should return their unique ID. Deterministic nodes
        should return the IDs of their parents. Constant nodes should return
        empty list of IDs.
        """
        id_list = []
        for parent in self.parents:
            id_list = id_list + parent._get_id_list()
        return id_list
    
    def get_moments(self):
        u_parents = self._message_from_parents()
        return self._compute_moments(*u_parents)

    def _compute_message_and_mask_to_parent(self, index, m_children, *u_parents):
        # The following methods should be implemented by sub-classes.
        m = self._compute_message_to_parent(index, m_children, *u_parents)
        mask = self._compute_weights_to_parent(index, self.mask) != 0
        return (m, mask)

    def _get_message_and_mask_to_parent(self, index, u_parent=None):
        u_parents = self._message_from_parents(exclude=index)
        u_parents[index] = u_parent
        if u_parent is not None:
            u_self = self._compute_moments(*u_parents)
        else:
            u_self = None
        m_children = self._message_from_children(u_self=u_self)
        return self._compute_message_and_mask_to_parent(index,
                                                        m_children,
                                                        *u_parents)
        

    def _compute_moments(self, *u_parents):
        """
        Compute the moments given the moments of the parents.
        """
        raise NotImplementedError()


    def _compute_message_to_parent(self, index, m_children, *u_parents):
        """
        Compute the message to a parent.
        """
        raise NotImplementedError()

    
    def _add_child(self, child, index):
        """
        Add a child node.

        Only child nodes that are stochastic (or have stochastic children
        recursively) are counted as children because deterministic nodes without
        stochastic children do not have any messages to send so the parents do
        not need to know about the deterministic node.

        A deterministic node does not notify its parents when created, but if it
        gets a stochastic child node, then notify parents. This method is called
        only if a stochastic child (recursively) node is added, thus there is at
        least one stochastic node below this deterministic node.

        Parameters
        ----------
        child : node
        index : int
           The parent index of this node for the child node.  
           The child node recognizes its parents by their index 
           number.
        """
        super()._add_child(child, index)
        # Now that this deterministic node has non-deterministic children,
        # notify parents
        for (ind,parent) in enumerate(self.parents):
            parent._add_child(self, ind)

    def _remove_child(self, child, index):
        """
        Remove a child node.

        Only child nodes that are stochastic (or have stochastic children
        recursively) are counted as children because deterministic nodes without
        stochastic children do not have any messages to send so the parents do
        not need to know about the deterministic node.

        So, if the deterministic node does not have any stochastic children left
        after removal, remove it from its parents.
        """
        super()._remove_child(child, index)
        # Check whether there are any children left. If not, remove from parents
        if len(self.children) == 0:
            for (ind, parent) in enumerate(self.parents):
                parent._remove_child(self, ind)

    def lower_bound_contribution(self, gradient=False, **kwargs):
        # Deterministic functions are delta distributions so the lower bound
        # contribuion is zero.
        return 0


    def random(self):
        samples = [parent.random() for parent in self.parents]
        return self._compute_function(*samples)


def tile(X, tiles):
    """
    Tile the plates of the input node.

    x = [a,b,c]
    y = tile(x, 2) = [a,b,c,a,b,c]

    There should be no need to tile plates that have unit length because they
    are handled properly by the broadcasting rules already.

    Parameters
    ----------
    X : Node
        Input node to be tiled.
    tiles : int, tuple
        Tiling of the plates (broadcasting rules for plates apply).

    See also
    --------
    numpy.tile
    """
    
    # Make sure `tiles` is tuple (even if an integer is given)
    tiles = tuple(np.ravel(tiles))

    
    class _Tile(Deterministic):

        _parent_moments = (Moments(),)
        
        def __init__(self, X, **kwargs):
            self._moments = X._moments
            super().__init__(X, dims=X.dims, **kwargs)
    
        def _compute_plates_to_parent(self, index, plates):
            plates = list(plates)
            for i in range(-len(tiles), 0):
                plates[i] = plates[i] // tiles[i]
            return tuple(plates)

        def _compute_plates_from_parent(self, index, plates):
            return tuple(misc.multiply_shapes(plates, tiles))


        def _compute_weights_to_parent(self, index, weights):
            # Idea: Reshape the message array such that every other axis
            # will be summed and every other kept.

            # Make plates equal length
            plates = self._plates_to_parent(index)
            shape_m = np.shape(weights)
            (plates, tiles_m, shape_m) = misc.make_equal_length(
                plates,
                tiles,
                shape_m
            )

            # Handle broadcasting rules for axes that have unit length in
            # the message (although the plate may be non-unit length). Also,
            # compute the corresponding broadcasting_multiplier.
            plates = list(plates)
            tiles_m = list(tiles_m)
            for j in range(len(plates)):
                if shape_m[j] == 1:
                    plates[j] = 1
                    tiles_m[j] = 1

            # Combine the tuples by picking every other from tiles_ind and
            # every other from shape
            shape = functools.reduce(lambda x,y: x+y,
                                     zip(tiles_m, plates))
            # ..and reshape the array, that is, every other axis corresponds
            # to tiles and every other to plates/dimensions in parents
            weights = np.reshape(weights, shape)

            # Sum over every other axis
            axes = tuple(range(0,len(shape),2))
            weights = np.sum(weights, axis=axes)

            # Remove extra leading axes
            ndim_parent = len(self.parents[index].plates)
            weights = misc.squeeze_to_dim(weights, ndim_parent)

            return weights


        def _compute_message_to_parent(self, index, m, u_X):
            m = list(m)
            for ind in range(len(m)):

                # Idea: Reshape the message array such that every other axis
                # will be summed and every other kept.
                
                shape_ind = self._plates_to_parent(index) + self.dims[ind]
                # Add variable dimensions to tiles
                tiles_ind = tiles + (1,)*len(self.dims[ind])

                # Make shape tuples equal length
                shape_m = np.shape(m[ind])
                (tiles_ind, shape, shape_m) = misc.make_equal_length(tiles_ind,
                                                                     shape_ind,
                                                                     shape_m)

                # Handle broadcasting rules for axes that have unit length in
                # the message (although the plate may be non-unit length). Also,
                # compute the corresponding broadcasting multiplier.
                r = 1
                shape = list(shape)
                tiles_ind = list(tiles_ind)
                for j in range(len(shape)):
                    if shape_m[j] == 1:
                        r *= tiles_ind[j]
                        shape[j] = 1
                        tiles_ind[j] = 1

                # Combine the tuples by picking every other from tiles_ind and
                # every other from shape
                shape = functools.reduce(lambda x,y: x+y,
                                         zip(tiles_ind, shape))
                # ..and reshape the array, that is, every other axis corresponds
                # to tiles and every other to plates/dimensions in parents
                m[ind] = np.reshape(m[ind], shape)

                # Sum over every other axis
                axes = tuple(range(0,len(shape),2))
                m[ind] = r * np.sum(m[ind], axis=axes)

                # Remove extra leading axes
                ndim_parent = len(self.parents[index].get_shape(ind))
                m[ind] = misc.squeeze_to_dim(m[ind], ndim_parent)
            
            return m

        def _compute_moments(self, u_X):
            """
            Tile the plates of the parent's moments.
            """
            # Utilize broadcasting: If a tiled axis is unit length in u_X, there
            # is no need to tile it.
            u = list()
            for ind in range(len(u_X)):
                ui = u_X[ind]
                shape_u = np.shape(ui)
                if np.ndim(ui) > 0:
                    # Add variable dimensions
                    tiles_ind = tiles + (1,)*len(self.dims[ind])
                    # Utilize broadcasting: Do not tile leading empty axes
                    nd = min(len(tiles_ind), np.ndim(ui))
                    tiles_ind = tiles_ind[(-nd):]
                    # For simplicity, make tiles and shape equal length
                    (tiles_ind, shape_u) = misc.make_equal_length(tiles_ind,
                                                                  shape_u)
                    # Utilize broadcasting: Use tiling only if the parent's
                    # moment has non-unit axis length.
                    tiles_ind = [tile if sh > 1 else 1
                                 for (tile, sh) in zip(tiles_ind, shape_u)]
                        
                    # Tile
                    ui = np.tile(ui, tiles_ind)
                u.append(ui)
            return u
            
    return _Tile(X, name="tile(%s, %s)" % (X.name, tiles))