File: expfamily.py

package info (click to toggle)
python-bayespy 0.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,132 kB
  • sloc: python: 22,402; makefile: 156
file content (542 lines) | stat: -rw-r--r-- 18,629 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
################################################################################
# Copyright (C) 2013-2014 Jaakko Luttinen
#
# This file is licensed under the MIT License.
################################################################################


import warnings

import numpy as np

from bayespy.utils import misc

from .node import ensureparents
from .stochastic import Stochastic, Distribution

class ExponentialFamilyDistribution(Distribution):
    """
    Sub-classes implement distribution specific computations.
    """

    #
    # The following methods are for ExponentialFamily distributions
    #

    def compute_message_to_parent(self, parent, index, u_self, *u_parents):
        raise NotImplementedError()

    def compute_phi_from_parents(self, *u_parents, mask=True):
        raise NotImplementedError()

    def compute_moments_and_cgf(self, phi, mask=True):
        raise NotImplementedError()

    #
    # The following methods are for Mixture class
    #

    def compute_cgf_from_parents(self, *u_parents):
        raise NotImplementedError()

    def compute_fixed_moments_and_f(self, x, mask=True):
        raise NotImplementedError()

    def compute_logpdf(self, u, phi, g, f, ndims):
        """ Compute E[log p(X)] given E[u], E[phi], E[g] and
        E[f]. Does not sum over plates."""

        # TODO/FIXME: Should I take into account what is latent or
        # observed, or what is even totally ignored (by the mask).
        L = g + f
        for (phi_i, u_i, ndims_i) in zip(phi, u, ndims):
            # Axes to sum (dimensions of the variable, not the plates)
            axis_sum = tuple(range(-ndims_i,0))
            # Compute the term
            # TODO/FIXME: Use einsum!
            L = L + np.sum(
                np.where(u_i != 0, phi_i, 0) * u_i,
                axis=axis_sum
            )
        return L


    def compute_gradient(self, g, u, phi):
        r"""
        Compute the standard gradient with respect to the natural parameters.
        """

        raise NotImplementedError("Standard gradient not yet implemented for %s"
                                  % (self.__class__.__name__))



def useconstructor(__init__):
    def constructor_decorator(self, *args, **kwargs):
        if (self.dims is None or
            self._distribution is None or
            self._moments is None or
            self._parent_moments is None):

            (args, kwargs, dims, plates, dist, stats, pstats) = \
              self._constructor(*args, **kwargs)

            self.dims = dims
            self._distribution = dist
            self._moments = stats
            self._parent_moments = pstats
            self.plates = plates

        __init__(self, *args, **kwargs)

    return constructor_decorator

class ExponentialFamily(Stochastic):
    """
    A base class for nodes using natural parameterization `phi`.

    phi

    Sub-classes must implement the following static methods:
       _compute_message_to_parent(index, u_self, *u_parents)
       _compute_phi_from_parents(*u_parents, mask)
       _compute_moments_and_cgf(phi, mask)
       _compute_fixed_moments_and_f(x, mask=True)

    Sub-classes may need to re-implement:
    1. If they manipulate plates:
       _compute_weights_to_parent(index, weights)
       _compute_plates_to_parent(self, index, plates)
       _compute_plates_from_parent(self, index, plates)

    """

    # Sub-classes should overwrite this (possibly using _constructor)
    dims = None

    # Sub-classes should overwrite this
    _distribution = None

    @useconstructor
    def __init__(self, *parents, initialize=True, phi_bias=None, **kwargs):

        self.annealing = 1.0

        # Terms for the lower bound (G for latent and F for observed)
        self.g = np.array(np.nan)
        self.f = np.array(np.nan)

        self._phi_bias = phi_bias if phi_bias is not None else len(self.dims) * [0.0]

        super().__init__(*parents,
                         initialize=initialize,
                         dims=self.dims,
                         **kwargs)

        if not initialize:
            axes = len(self.plates)*(1,)
            self.phi = [misc.nans(axes+dim) for dim in self.dims]


    @classmethod
    @ensureparents
    def _constructor(cls, *parents, **kwargs):
        """
        Constructs distribution and moments objects.

        If __init__ uses useconstructor decorator, this method is called to
        construct distribution and moments objects.

        The method is given the same inputs as __init__. For some nodes, some of
        these can't be "static" class attributes, then the node class must
        overwrite this method to construct the objects manually.

        The point of distribution class is to move general distribution but
        not-node specific code. The point of moments class is to define the
        messaging protocols.
        """
        parent_plates = [cls._distribution.plates_from_parent(ind, parent.plates)
                         for (ind, parent) in enumerate(parents)]
        return (parents,
                kwargs,
                cls.dims,
                cls._total_plates(kwargs.get('plates'), *parent_plates),
                cls._distribution,
                cls._moments,
                cls._parent_moments)

    def _initialize_from_parent_moments(self, *u_parents):
        if not np.all(self.observed):
            # Update natural parameters using parents
            self._update_phi_from_parents(*u_parents)

            # Update moments
            mask = np.logical_not(self.observed)
            (u, g) = self._distribution.compute_moments_and_cgf(self.phi,
                                                                mask=mask)
            # TODO/FIXME/BUG: You should use observation mask in order to not
            # overwrite them!
            self._set_moments_and_cgf(u, g, mask=mask)


    def initialize_from_prior(self):
        u_parents = self._message_from_parents()
        self._initialize_from_parent_moments(*u_parents)


    def initialize_from_parameters(self, *args):
        u_parents = [p_mom.compute_fixed_moments(x)
                     for (p_mom, x) in zip(self._parent_moments, args)]
        self._initialize_from_parent_moments(*u_parents)


    def initialize_from_value(self, x, *args):
        # Update moments from value
        mask = np.logical_not(self.observed)
        u = self._moments.compute_fixed_moments(x, *args)
        # Check that the shape is correct
        for i in range(len(u)):
            ndim = len(self.dims[i])
            if ndim > 0:
                if np.shape(u[i])[-ndim:] != self.dims[i]:
                    raise ValueError("The initial value for node %s has invalid shape %s."
                                     % (np.shape(x)))
        self._set_moments_and_cgf(u, np.inf, mask=mask)

    def initialize_from_random(self):
        """
        Set the variable to a random sample from the current distribution.
        """
        #self.initialize_from_prior()
        X = self.random()
        self.initialize_from_value(X)


    def _update_phi_from_parents(self, *u_parents):

        # TODO/FIXME: Could this be combined to the function
        # _update_distribution_and_lowerbound ?
        # No, because some initialization methods may want to use this.

        # This makes correct broadcasting
        self.phi = [
            a + b
            for (a, b) in zip(
                self._distribution.compute_phi_from_parents(*u_parents),
                self._phi_bias
            )
        ]
        # Make sure phi has the correct number of axes. It makes life
        # a bit easier elsewhere.
        for i in range(len(self.phi)):
            axes = len(self.plates) + self.ndims[i] - np.ndim(self.phi[i])
            if axes > 0:
                # Add axes
                self.phi[i] = misc.add_leading_axes(self.phi[i], axes)
            elif axes < 0:
                # Remove extra leading axes
                first = -(len(self.plates)+self.ndims[i])
                sh = np.shape(self.phi[i])[first:]
                self.phi[i] = np.reshape(self.phi[i], sh)
            # Check that the shape is correct
            if not misc.is_shape_subset(np.shape(self.phi[i]),
                                         self.get_shape(i)):
                raise ValueError("Incorrect shape of phi[%d] in node class %s. "
                                 "Shape is %s but it should be broadcastable "
                                 "to shape %s."
                                 % (i,
                                    self.__class__.__name__,
                                    np.shape(self.phi[i]),
                                    self.get_shape(i)))

    def _set_moments_and_cgf(self, u, g, mask=True):
        self._set_moments(u, mask=mask)

        self.g = np.where(mask, g, self.g)

        return


    def get_riemannian_gradient(self):
        r"""
        Computes the Riemannian/natural gradient.
        """
        u_parents = self._message_from_parents()
        m_children = self._message_from_children()

        # TODO/FIXME: Put observed plates to zero?
        # Compute the gradient
        phi = [
            a + b
            for (a, b) in zip(
                self._distribution.compute_phi_from_parents(*u_parents),
                self._phi_bias
            )
        ]
        for i in range(len(self.phi)):
            phi[i] = self.annealing * (phi[i] + m_children[i]) - self.phi[i]
            phi[i] = phi[i] * np.ones(self.get_shape(i))

        return phi


    def get_gradient(self, rg):
        r""" Computes gradient with respect to the natural parameters.

        The function takes the Riemannian gradient as an input.  This is for
        three reasons: 1) You probably want to use the Riemannian gradient
        anyway so this helps avoiding accidental use of this function.  2) The
        gradient is computed by using the Riemannian gradient and chain rules.
        3) Probably you need both Riemannian and normal gradients anyway so you
        can provide it to this function to avoid re-computing it."""

        g = self._distribution.compute_gradient(rg, self.u, self.phi)
        for i in range(len(g)):
            g[i] /= self.annealing
        return g


    ## def update_parameters(self, d, scale=1.0):
    ##     r"""
    ##     Update the parameters of the VB distribution given a change.

    ##     The parameters should be such that they can be used for
    ##     optimization, that is, use log transformation for positive
    ##     parameters.
    ##     """
    ##     phi = self.get_parameters()
    ##     for i in range(len(phi)):
    ##         phi[i] = phi[i] + scale*d[i]
    ##     self.set_parameters(phi)
    ##     return


    def get_parameters(self):
        r"""
        Return parameters of the VB distribution.

        The parameters should be such that they can be used for
        optimization, that is, use log transformation for positive
        parameters.
        """
        return [np.copy(p) for p in self.phi]



    def _decode_parameters(self, x):
        return [np.copy(p) for p in x]


    def set_parameters(self, x):
        r"""
        Set the parameters of the VB distribution.

        The parameters should be such that they can be used for
        optimization, that is, use log transformation for positive
        parameters.
        """
        self.phi = self._decode_parameters(x)
        self._update_moments_and_cgf()
        return


    def _update_distribution_and_lowerbound(self, m_children, *u_parents):

        # Update phi first from parents..
        self._update_phi_from_parents(*u_parents)
        # .. then just add children's message
        self.phi = [self.annealing * (phi + m)
                    for (phi, m) in zip(self.phi, m_children)]

        # Update u and g
        self._update_moments_and_cgf()


    def _update_moments_and_cgf(self):
        """
        Update moments and cgf based on current phi.
        """
        # Mask for plates to update (i.e., unobserved plates)
        update_mask = np.logical_not(self.observed)

        # Compute the moments (u) and CGF (g)...
        (u, g) = self._distribution.compute_moments_and_cgf(self.phi,
                                                            mask=update_mask)
        # ... and store them
        self._set_moments_and_cgf(u, g, mask=update_mask)


    def observe(self, x, *args, mask=True):
        """
        Fix moments, compute f and propagate mask.
        """

        # Compute fixed moments
        (u, f) = self._distribution.compute_fixed_moments_and_f(x, *args,
                                                                mask=mask)

        # # Check the dimensionality of the observations
        # self._check_shape()
        # for (i,v) in enumerate(u):
        #     # This is what the dimensionality "should" be
        #     s = self.plates + self.dims[i]
        #     t = np.shape(v)
        #     if s != t:
        #         msg = "Dimensionality of the observations incorrect."
        #         msg += "\nShape of input: " + str(t)
        #         msg += "\nExpected shape: " + str(s)
        #         msg += "\nCheck plates."
        #         raise Exception(msg)

        # Set the moments. Shape checking is done there.
        self._set_moments(u, mask=mask, broadcast=False)

        self.f = np.where(mask, f, self.f)

        # Observed nodes should not be ignored
        self.observed = mask
        self._update_mask()

    def lower_bound_contribution(self, gradient=False, ignore_masked=True):
        r"""Compute E[ log p(X|parents) - log q(X) ]

        If deterministic annealing is used, the term E[ -log q(X) ] is
        divided by the anneling coefficient.  That is, phi and cgf of q
        are multiplied by the temperature (inverse annealing
        coefficient).

        """

        # Annealing temperature
        T = 1 / self.annealing

        # Messages from parents
        u_parents = self._message_from_parents()
        phi = [
            a # + b # TODO: Should the bias be added here or not?
            for (a, b) in zip(
                self._distribution.compute_phi_from_parents(*u_parents),
                self._phi_bias
            )
        ]
        # G from parents
        L = self._distribution.compute_cgf_from_parents(*u_parents)

        # G for unobserved variables (ignored variables are handled properly
        # automatically)
        latent_mask = np.logical_not(self.observed)

        # G and F
        if np.all(self.observed):
            z = np.nan
        elif T == 1:
            z = -self.g
        else:
            z = -T * self.g
            ## TRIED THIS BUT IT WAS WRONG:
            ## z = -T * self.g + (1-T) * self.f
            ## if np.any(np.isnan(self.f)):
            ##     warnings.warn("F(x) not implemented for node %s. This "
            ##                   "is required for annealed lower bound "
            ##                   "computation." % self.__class__.__name__)
            ##
            ## It was wrong because the optimal q distribution has f which is
            ## weighted by 1/T and here the f of q is weighted by T so the
            ## total weight is 1, thus it cancels out with f of p.

        L = L + np.where(self.observed, self.f, z)

        for (phi_p, phi_q, u_q, dims) in zip(phi, self.phi, self.u, self.dims):
            # Form a mask which puts observed variables to zero and
            # broadcasts properly
            latent_mask_i = misc.add_trailing_axes(
                                misc.add_leading_axes(
                                    latent_mask,
                                    len(self.plates) - np.ndim(latent_mask)),
                                len(dims))
            axis_sum = tuple(range(-len(dims),0))

            # Compute the term
            phi_q = np.where(latent_mask_i, phi_q, 0)
            # Apply annealing
            phi_diff = phi_p - T * phi_q
            # Handle 0 * -inf
            phi_diff = np.where(u_q != 0, phi_diff, 0)
            # TODO/FIXME: Use einsum here?
            Z = np.sum(phi_diff * u_q, axis=axis_sum)

            L = L + Z

        if ignore_masked:
            return (np.sum(np.where(self.mask, L, 0))
                    * self.broadcasting_multiplier(self.plates,
                                                   np.shape(L),
                                                   np.shape(self.mask))
                    * np.prod(self.plates_multiplier))
        else:
            return (np.sum(L)
                    * self.broadcasting_multiplier(self.plates,
                                                   np.shape(L))
                    * np.prod(self.plates_multiplier))


    def logpdf(self, X, mask=True):
        """
        Compute the log probability density function Q(X) of this node.
        """
        if mask is not True:
            raise NotImplementedError('Mask not yet implemented')
        (u, f) = self._distribution.compute_fixed_moments_and_f(X, mask=mask)
        Z = 0
        for (phi_d, u_d, dims) in zip(self.phi, u, self.dims):
            axis_sum = tuple(range(-len(dims),0))
            # TODO/FIXME: Use einsum here?
            Z = Z + np.sum(phi_d * u_d, axis=axis_sum)
            #Z = Z + misc.sum_multiply(phi_d, u_d, axis=axis_sum)

        return (self.g + f + Z)


    def pdf(self, X, mask=True):
        """
        Compute the probability density function of this node.
        """
        return np.exp(self.logpdf(X, mask=mask))


    def _save(self, group):
        """
        Save the state of the node into a HDF5 file.

        group can be the root
        """
        ## if name is None:
        ##     name = self.name
        ## subgroup = group.create_group(name)

        for i in range(len(self.phi)):
            misc.write_to_hdf5(group, self.phi[i], 'phi%d' % i)
        misc.write_to_hdf5(group, self.f, 'f')
        misc.write_to_hdf5(group, self.g, 'g')
        super()._save(group)


    def _load(self, group):
        """
        Load the state of the node from a HDF5 file.
        """
        # TODO/FIXME: Check that the shapes are correct!
        for i in range(len(self.phi)):
            phii = group['phi%d' % i][...]
            self.phi[i] = phii

        self.f = group['f'][...]
        self.g = group['g'][...]
        super()._load(group)


    def random(self):
        """
        Draw a random sample from the distribution.
        """
        return self._distribution.random(*(self.phi), plates=self.plates)