1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
################################################################################
# Copyright (C) 2014 Jaakko Luttinen
#
# This file is licensed under the MIT License.
################################################################################
"""
"""
import numpy as np
from bayespy.utils import misc
from .node import Node, Moments
from .deterministic import Deterministic
from .categorical import CategoricalMoments
from .concatenate import Concatenate
class Gate(Deterministic):
"""
Deterministic gating of one node.
Gating is performed over one plate axis.
Note: You should not use gating for several variables which parents of a
same node if the gates use the same gate assignments. In such case, the
results will be wrong. The reason is a general one: A stochastic node may
not be a parent of another node via several paths unless at most one path
has no other stochastic nodes between them.
"""
def __init__(self, Z, X, gated_plate=-1, moments=None, **kwargs):
"""
Constructor for the gating node.
Parameters
----------
Z : Categorical-like node
A variable which chooses the index along the gated plate axis
X : node
The node whose plate axis is gated
gated_plate : int (optional)
The index of the plate axis to be gated (by default, -1, that is,
the last axis).
"""
if gated_plate >= 0:
raise ValueError("Cluster plate must be negative integer")
self.gated_plate = gated_plate
if moments is not None:
X = self._ensure_moments(
X,
moments.__class__,
**moments.get_instance_conversion_kwargs()
)
if not isinstance(X, Node):
raise ValueError("X must be a node or moments should be provided")
X_moments = X._moments
self._moments = X_moments
dims = X.dims
if len(X.plates) < abs(gated_plate):
raise ValueError("The gated node does not have a plate axis is "
"gated")
K = X.plates[gated_plate]
Z = self._ensure_moments(Z, CategoricalMoments, categories=K)
self._parent_moments = (Z._moments, X_moments)
if Z.dims != ( (K,), ):
raise ValueError("Inconsistent number of clusters")
self.K = K
super().__init__(Z, X, dims=dims, **kwargs)
def _compute_moments(self, u_Z, u_X):
"""
"""
u = []
for i in range(len(u_X)):
# Make the moments of Z and X broadcastable and move the gated plate
# to be the last axis in the moments, then sum-product over that
# axis
ndim = len(self.dims[i])
z = misc.add_trailing_axes(u_Z[0], ndim)
z = misc.moveaxis(z, -ndim-1, -1)
gated_axis = self.gated_plate - ndim
if np.ndim(u_X[i]) < abs(gated_axis):
x = misc.add_trailing_axes(u_X[i], 1)
else:
x = misc.moveaxis(u_X[i], gated_axis, -1)
ui = misc.sum_product(z, x, axes_to_sum=-1)
u.append(ui)
return u
def _compute_message_to_parent(self, index, m_child, u_Z, u_X):
"""
"""
if index == 0:
m0 = 0
# Compute Child * X, sum over variable axes and move the gated axis
# to be the last. Need to do some shape changing in order to make
# Child and X to broadcast properly.
for i in range(len(m_child)):
ndim = len(self.dims[i])
c = m_child[i][...,None]
c = misc.moveaxis(c, -1, -ndim-1)
gated_axis = self.gated_plate - ndim
x = u_X[i]
if np.ndim(x) < abs(gated_axis):
x = np.expand_dims(x, -ndim-1)
else:
x = misc.moveaxis(x, gated_axis, -ndim-1)
axes = tuple(range(-ndim, 0))
m0 = m0 + misc.sum_product(c, x, axes_to_sum=axes)
# Make sure the variable axis does not use broadcasting
m0 = m0 * np.ones(self.K)
# Send the message
m = [m0]
return m
elif index == 1:
m = []
for i in range(len(m_child)):
# Make the moments of Z and the message from children
# broadcastable. The gated plate is handled as the last axis in
# the arrays and moved to the correct position at the end.
# Add variable axes to Z moments
ndim = len(self.dims[i])
z = misc.add_trailing_axes(u_Z[0], ndim)
z = misc.moveaxis(z, -ndim-1, -1)
# Axis index of the gated plate
gated_axis = self.gated_plate - ndim
# Add the gate axis to the message from the children
c = misc.add_trailing_axes(m_child[i], 1)
# Compute the message to parent
mi = z * c
# Add extra axes if necessary
if np.ndim(mi) < abs(gated_axis):
mi = misc.add_leading_axes(mi,
abs(gated_axis) - np.ndim(mi))
# Move the axis to the correct position
mi = misc.moveaxis(mi, -1, gated_axis)
m.append(mi)
return m
else:
raise ValueError("Invalid parent index")
def _compute_weights_to_parent(self, index, weights):
"""
"""
if index == 0:
return weights
elif index == 1:
if self.gated_plate >= 0:
raise ValueError("Gated plate axis must be negative")
return (
np.expand_dims(weights, axis=self.gated_plate)
if np.ndim(weights) >= abs(self.gated_plate) else
weights
)
else:
raise ValueError("Invalid parent index")
def _compute_plates_to_parent(self, index, plates):
"""
"""
if index == 0:
return plates
elif index == 1:
plates = list(plates)
# Add the cluster plate axis
if self.gated_plate < 0:
knd = len(plates) + self.gated_plate + 1
else:
raise RuntimeError("Cluster plate axis must be negative")
plates.insert(knd, self.K)
return tuple(plates)
else:
raise ValueError("Invalid parent index")
def _compute_plates_from_parent(self, index, plates):
"""
"""
if index == 0:
return plates
elif index == 1:
plates = list(plates)
# Remove the cluster plate, if the parent has it
if len(plates) >= abs(self.gated_plate):
plates.pop(self.gated_plate)
return tuple(plates)
else:
raise ValueError("Invalid parent index")
def Choose(z, *nodes):
"""Choose plate elements from nodes based on a categorical variable.
For instance:
.. testsetup::
from bayespy.nodes import *
.. code-block:: python
>>> import bayespy as bp
>>> z = [0, 0, 2, 1]
>>> x0 = bp.nodes.GaussianARD(0, 1)
>>> x1 = bp.nodes.GaussianARD(10, 1)
>>> x2 = bp.nodes.GaussianARD(20, 1)
>>> x = bp.nodes.Choose(z, x0, x1, x2)
>>> print(x.get_moments()[0])
[ 0. 0. 20. 10.]
This is basically just a thin wrapper over applying Gate node over the
concatenation of the nodes.
"""
categories = len(nodes)
z = Deterministic._ensure_moments(
z,
CategoricalMoments,
categories=categories
)
nodes = [node[...,None] for node in nodes]
combined = Concatenate(*nodes)
return Gate(z, combined)
|