1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
################################################################################
# Copyright (C) 2014 Jaakko Luttinen
#
# This file is licensed under the MIT License.
################################################################################
"""
Module for the Poisson distribution node.
"""
import numpy as np
from scipy import special
from .expfamily import ExponentialFamily
from .expfamily import ExponentialFamilyDistribution
from .node import Moments
from .gamma import GammaMoments
from bayespy.utils import misc
class PoissonMoments(Moments):
"""
Class for the moments of Poisson variables
"""
dims = ( (), )
def compute_fixed_moments(self, x):
"""
Compute the moments for a fixed value
"""
# Make sure the values are integers in valid range
x = np.asanyarray(x)
if not misc.isinteger(x):
raise ValueError("Count not integer")
# Now, the moments are just the counts
return [x]
@classmethod
def from_values(cls, x):
"""
Return the shape of the moments for a fixed value.
The realizations are scalars, thus the shape of the moment is ().
"""
return cls()
class PoissonDistribution(ExponentialFamilyDistribution):
"""
Class for the VMP formulas of Poisson variables.
"""
def compute_message_to_parent(self, parent, index, u, u_lambda):
"""
Compute the message to a parent node.
"""
if index == 0:
m0 = -1
m1 = np.copy(u[0])
return [m0, m1]
else:
raise ValueError("Index out of bounds")
def compute_phi_from_parents(self, u_lambda, mask=True):
"""
Compute the natural parameter vector given parent moments.
"""
l = u_lambda[0]
logl = u_lambda[1]
phi0 = logl
return [phi0]
def compute_moments_and_cgf(self, phi, mask=True):
"""
Compute the moments and :math:`g(\phi)`.
"""
u0 = np.exp(phi[0])
u = [u0]
g = -u0
return (u, g)
def compute_cgf_from_parents(self, u_lambda):
"""
Compute :math:`\mathrm{E}_{q(p)}[g(p)]`
"""
l = u_lambda[0]
g = -l
return g
def compute_fixed_moments_and_f(self, x, mask=True):
"""
Compute the moments and :math:`f(x)` for a fixed value.
"""
# Check the validity of x
x = np.asanyarray(x)
if not misc.isinteger(x):
raise ValueError("Values must be integers")
if np.any(x < 0):
raise ValueError("Values must be positive")
# Compute moments
u0 = np.copy(x)
u = [u0]
# Compute f(x)
f = -special.gammaln(x+1)
return (u, f)
def random(self, *phi, plates=None):
"""
Draw a random sample from the distribution.
"""
return np.random.poisson(np.exp(phi[0]), size=plates)
class Poisson(ExponentialFamily):
"""
Node for Poisson random variables.
The node uses Poisson distribution:
.. math::
p(x) = \mathrm{Poisson}(x|\lambda)
where :math:`\lambda` is the rate parameter.
Parameters
----------
l : gamma-like node or scalar or array
:math:`\lambda`, rate parameter
See also
--------
Gamma, Exponential
"""
dims = ( (), )
_moments = PoissonMoments()
_parent_moments = [GammaMoments()]
_distribution = PoissonDistribution()
def __init__(self, l, **kwargs):
"""
Create Poisson random variable node
"""
super().__init__(l, **kwargs)
def __str__(self):
"""
Print the distribution using standard parameterization.
"""
l = self.u[0]
return ("%s ~ Categorical(lambda)\n"
" lambda =\n"
"%s\n"
% (self.name, l))
|