1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
################################################################################
# Copyright (C) 2013-2014 Jaakko Luttinen
#
# This file is licensed under the MIT License.
################################################################################
import numpy as np
from bayespy.utils import misc
import h5py
from .node import Node
class Distribution():
"""
A base class for the VMP formulas of variables.
Sub-classes implement distribution specific computations.
If a sub-class maps the plates differently, it needs to overload the
following methods:
* compute_weights_to_parent
* plates_to_parent
* plates_from_parent
"""
def compute_message_to_parent(self, parent, index, u_self, *u_parents):
"""
Compute the message to a parent node.
"""
raise NotImplementedError()
def compute_weights_to_parent(self, index, weights):
"""
Maps the mask to the plates of a parent.
"""
# Sub-classes may need to overwrite this method
return weights
def plates_to_parent(self, index, plates):
"""
Resolves the plate mapping to a parent.
Given the plates of the node's moments, this method returns the plates
that the message to a parent has for the parent's distribution.
"""
return plates
def plates_from_parent(self, index, plates):
"""
Resolve the plate mapping from a parent.
Given the plates of a parent's moments, this method returns the plates
that the moments has for this distribution.
"""
return plates
def random(self, *params, plates=None):
"""
Draw a random sample from the distribution.
"""
raise NotImplementedError()
def squeeze(self, axis):
"""Squeeze a plate axis from the distribution
The default implementation does no changes to the distribution.
Override if needed.
"""
return self
class Stochastic(Node):
"""
Base class for nodes that are stochastic.
u
observed
Sub-classes must implement:
_compute_message_to_parent(parent, index, u_self, *u_parents)
_update_distribution_and_lowerbound(self, m, *u)
lowerbound(self)
_compute_dims
initialize_from_prior()
If you want to be able to observe the variable:
_compute_fixed_moments_and_f
Sub-classes may need to re-implement:
1. If they manipulate plates:
_compute_weights_to_parent(index, weights)
_compute_plates_to_parent(self, index, plates)
_compute_plates_from_parent(self, index, plates)
"""
# Sub-classes must over-write this
_distribution = None
def __init__(self, *args, initialize=True, dims=None, **kwargs):
self._id = Node._id_counter
Node._id_counter += 1
super().__init__(*args,
dims=dims,
**kwargs)
# Initialize moment array
axes = len(self.plates)*(1,)
self.u = [misc.nans(axes+dim) for dim in dims]
# Not observed
self.observed = False
self.ndims = [len(dim) for dim in self.dims]
if initialize:
self.initialize_from_prior()
def get_pdf_nodes(self):
return (self,) + super().get_pdf_nodes()
def _get_pdf_nodes_conditioned_on_parents(self):
return (self,)
def _get_id_list(self):
"""
Returns the stochastic ID list.
This method is used to check that same stochastic nodes are not direct
parents of a node several times. It is only valid if there are
intermediate stochastic nodes.
To put it another way: each ID corresponds to one factor q(..) in the
posterior approximation. Different IDs mean different factors, thus they
mean independence. The parents must have independent factors.
Stochastic nodes should return their unique ID. Deterministic nodes
should return the IDs of their parents. Constant nodes should return
empty list of IDs.
"""
return [self._id]
def _compute_plates_to_parent(self, index, plates):
return self._distribution.plates_to_parent(index, plates)
def _compute_plates_from_parent(self, index, plates):
return self._distribution.plates_from_parent(index, plates)
def _compute_weights_to_parent(self, index, weights):
return self._distribution.compute_weights_to_parent(index, weights)
def get_moments(self):
# Just for safety, do not return a reference to the moment list of this
# node but instead create a copy of the list.
return [ui for ui in self.u]
def _get_message_and_mask_to_parent(self, index, u_parent=None):
u_parents = self._message_from_parents(exclude=index)
u_parents[index] = u_parent
m = self._distribution.compute_message_to_parent(self.parents[index],
index,
self.u,
*u_parents)
mask = self._distribution.compute_weights_to_parent(index, self.mask) != 0
return (m, mask)
def _set_mask(self, mask):
self.mask = np.logical_or(mask, self.observed)
def _check_shape(self, u, broadcast=True):
if len(u) != len(self.dims):
raise ValueError("Incorrect number of arrays")
for (dimsi, ui) in zip(self.dims, u):
sh_true = self.plates + dimsi
sh = np.shape(ui)
ndim = len(dimsi)
errmsg = (
"Shape of the given array not equal to the shape of the node.\n"
"Received shape: {0}\n"
"Expected shape: {1}\n"
"Check plates."
.format(sh, sh_true)
)
if not broadcast:
if sh != sh_true:
raise ValueError(errmsg)
else:
if ndim == 0:
if not misc.is_shape_subset(sh, sh_true):
raise ValueError(errmsg)
else:
plates_ok = misc.is_shape_subset(sh[:-ndim], self.plates)
dims_ok = (sh[-ndim:] == dimsi)
if not (plates_ok and dims_ok):
raise ValueError(errmsg)
return
def _set_moments(self, u, mask=True, broadcast=True):
self._check_shape(u, broadcast=broadcast)
# Store the computed moments u but do not change moments for
# observations, i.e., utilize the mask.
for ind in range(len(u)):
# Add axes to the mask for the variable dimensions (mask
# contains only axes for the plates).
u_mask = misc.add_trailing_axes(mask, self.ndims[ind])
# Enlarge self.u[ind] as necessary so that it can store the
# broadcasted result.
sh = misc.broadcasted_shape_from_arrays(self.u[ind], u[ind], u_mask)
self.u[ind] = misc.repeat_to_shape(self.u[ind], sh)
# TODO/FIXME/BUG: The mask of observations is not used, observations
# may be overwritten!!! ???
# Hah, this function is used to set the observations! The caller
# should be careful what mask he uses! If you want to set only
# latent variables, then use such a mask.
# Use mask to update only unobserved plates and keep the
# observed as before
np.copyto(self.u[ind],
u[ind],
where=u_mask)
# Make sure u has the correct number of dimensions:
shape = self.get_shape(ind)
ndim = len(shape)
ndim_u = np.ndim(self.u[ind])
if ndim > ndim_u:
self.u[ind] = misc.add_leading_axes(u[ind], ndim - ndim_u)
elif ndim < ndim_u:
# This should not ever happen because we already checked the
# shape at the beginning of the function.
raise RuntimeError(
"This error should not happen. Fix shape checking."
"The size of the variable %s's %s-th moment "
"array is %s which is larger than it should "
"be, that is, %s, based on the plates %s and "
"dimension %s. Check that you have provided "
"plates properly."
% (self.name,
ind,
np.shape(self.u[ind]),
shape,
self.plates,
self.dims[ind]))
def update(self, annealing=1.0):
if not np.all(self.observed):
u_parents = self._message_from_parents()
m_children = self._message_from_children()
if annealing != 1.0:
m_children = [annealing * m for m in m_children]
self._update_distribution_and_lowerbound(m_children, *u_parents)
def observe(self, x, mask=True):
"""
Fix moments, compute f and propagate mask.
"""
raise NotImplementedError()
def unobserve(self):
# Update mask
self.observed = False
self._update_mask()
def lowerbound(self):
# Sub-class should implement this
raise NotImplementedError()
def _update_distribution_and_lowerbound(self, m_children, *u_parents):
# Sub-classes should implement this
raise NotImplementedError()
def save(self, filename):
# Open HDF5 file
h5f = h5py.File(filename, 'w')
try:
# Write each node
nodegroup = h5f.create_group('nodes')
if self.name == '':
raise ValueError("In order to save nodes, they must have "
"(unique) names.")
self._save(nodegroup.create_group(self.name))
finally:
# Close file
h5f.close()
def _save(self, group):
"""
Save the state of the node into a HDF5 file.
group can be the root
"""
for i in range(len(self.u)):
misc.write_to_hdf5(group, self.u[i], 'u%d' % i)
misc.write_to_hdf5(group, self.observed, 'observed')
return
def load(self, filename):
h5f = h5py.File(filename, 'r')
try:
self._load(h5f['nodes'][self.name])
finally:
h5f.close()
return
def _load(self, group):
"""
Load the state of the node from a HDF5 file.
"""
# TODO/FIXME: Check that the shapes are correct!
for i in range(len(self.u)):
ui = group['u%d' % i][...]
self.u[i] = ui
old_observed = self.observed
self.observed = group['observed'][...]
# Update masks if necessary
if np.any(old_observed != self.observed):
self._update_mask()
def random(self):
"""
Draw a random sample from the distribution.
"""
raise NotImplementedError()
def show(self):
"""
Print the distribution using standard parameterization.
"""
print(str(self))
def __str__(self):
"""
"""
raise NotImplementedError("String representation not yet implemented for "
"node class %s" % (self.__class__.__name__))
|