File: test_categorical.py

package info (click to toggle)
python-bayespy 0.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,132 kB
  • sloc: python: 22,402; makefile: 156
file content (249 lines) | stat: -rw-r--r-- 7,079 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
################################################################################
# Copyright (C) 2014 Jaakko Luttinen
#
# This file is licensed under the MIT License.
################################################################################


"""
Unit tests for `categorical` module.
"""

import warnings

import numpy as np
import scipy

from bayespy.nodes import (Categorical,
                           Dirichlet,
                           Mixture,
                           Gamma)

from bayespy.utils import random
from bayespy.utils import misc

from bayespy.utils.misc import TestCase


class TestCategorical(TestCase):
    """
    Unit tests for Categorical node
    """

    
    def test_init(self):
        """
        Test the creation of categorical nodes.
        """

        # Some simple initializations
        X = Categorical([0.1, 0.3, 0.6])
        X = Categorical(Dirichlet([5,4,3]))

        # Check that plates are correct
        X = Categorical([0.1, 0.3, 0.6], plates=(3,4))
        self.assertEqual(X.plates,
                         (3,4))
        X = Categorical(0.25*np.ones((2,3,4)))
        self.assertEqual(X.plates,
                         (2,3))
        X = Categorical(Dirichlet([2,1,9], plates=(3,4)))
        self.assertEqual(X.plates,
                         (3,4))
        

        # Probabilities not a vector
        self.assertRaises(ValueError,
                          Categorical,
                          0.5)

        # Invalid probability
        self.assertRaises(ValueError,
                          Categorical,
                          [-0.5, 1.5],
                          n=10)
        self.assertRaises(ValueError,
                          Categorical,
                          [0.5, 1.5],
                          n=10)

        # Inconsistent plates
        self.assertRaises(ValueError,
                          Categorical,
                          0.25*np.ones((2,4)),
                          plates=(3,),
                          n=10)

        # Explicit plates too small
        self.assertRaises(ValueError,
                          Categorical,
                          0.25*np.ones((2,4)),
                          plates=(1,),
                          n=10)

        pass

    
    def test_moments(self):
        """
        Test the moments of categorical nodes.
        """

        # Simple test
        X = Categorical([0.7,0.2,0.1])
        u = X._message_to_child()
        self.assertEqual(len(u), 1)
        self.assertAllClose(u[0],
                            [0.7,0.2,0.1])

        # Test plates in p
        p = np.random.dirichlet([1,1], size=3)
        X = Categorical(p)
        u = X._message_to_child()
        self.assertAllClose(u[0],
                            p)
        
        # Test with Dirichlet prior
        P = Dirichlet([7, 3])
        logp = P._message_to_child()[0]
        p0 = np.exp(logp[0]) / (np.exp(logp[0]) + np.exp(logp[1]))
        p1 = np.exp(logp[1]) / (np.exp(logp[0]) + np.exp(logp[1]))
        X = Categorical(P)
        u = X._message_to_child()
        p = np.array([p0, p1])
        self.assertAllClose(u[0],
                            p)

        # Test with broadcasted plates
        P = Dirichlet([7, 3], plates=(10,))
        X = Categorical(P)
        u = X._message_to_child()
        self.assertAllClose(u[0] * np.ones(X.get_shape(0)),
                            p*np.ones((10,1)))

        pass


    def test_observed(self):
        """
        Test observed categorical nodes
        """

        # Single observation
        X = Categorical([0.7,0.2,0.1])
        X.observe(2)
        u = X._message_to_child()
        self.assertAllClose(u[0],
                            [0,0,1])

        # One plate axis
        X = Categorical([0.7,0.2,0.1], plates=(2,))
        X.observe([2,1])
        u = X._message_to_child()
        self.assertAllClose(u[0],
                            [[0,0,1],
                             [0,1,0]])

        # Several plate axes
        X = Categorical([0.7,0.1,0.1,0.1], plates=(2,3,))
        X.observe([[2,1,1],
                   [0,2,3]])
        u = X._message_to_child()
        self.assertAllClose(u[0],
                            [ [[0,0,1,0],
                               [0,1,0,0],
                               [0,1,0,0]],
                              [[1,0,0,0],
                               [0,0,1,0],
                               [0,0,0,1]] ])

        # Check invalid observations
        X = Categorical([0.7,0.2,0.1])
        self.assertRaises(ValueError,
                          X.observe,
                          -1)
        self.assertRaises(ValueError,
                          X.observe,
                          3)
        self.assertRaises(ValueError,
                          X.observe,
                          1.5)

        pass

    
    def test_constant(self):
        """
        Test constant categorical nodes
        """

        # Basic test
        Y = Mixture(2, Gamma, [1, 2, 3], [1, 1, 1])
        u = Y._message_to_child()
        self.assertAllClose(u[0],
                            3/1)

        # Test with one plate axis
        alpha = [[1, 2, 3],
                 [4, 5, 6]]
        Y = Mixture([2, 1], Gamma, alpha, 1)
        u = Y._message_to_child()
        self.assertAllClose(u[0],
                            [3, 5])

        # Test with two plate axes
        alpha = [ [[1, 2, 3],
                   [4, 5, 6]],
                  [[7, 8, 9],
                   [10, 11, 12]] ]
        Y = Mixture([[2, 1], [0, 2]], Gamma, alpha, 1)
        u = Y._message_to_child()
        self.assertAllClose(u[0],
                            [[3, 5],
                             [7, 12]])

        pass


    def test_initialization(self):
        """
        Test initialization of categorical nodes
        """

        # Test initialization from random
        with warnings.catch_warnings():
            warnings.simplefilter("ignore", RuntimeWarning)

            Z = Categorical([[0.0, 1.0, 0.0],
                             [0.0, 0.0, 1.0]])
            Z.initialize_from_random()
            u = Z._message_to_child()
            self.assertAllClose(u[0],
                                [[0, 1, 0],
                                 [0, 0, 1]])

        pass


    def test_gradient(self):
        """
        Check the Euclidean gradient of the categorical node
        """

        Z = Categorical([[0.3, 0.5, 0.2], [0.1, 0.6, 0.3]])
        Y = Mixture(Z, Gamma, [2, 3, 4], [5, 6, 7])
        Y.observe([4.2, 0.2])
        def f(x):
            Z.set_parameters([np.reshape(x, Z.get_shape(0))])
            return Z.lower_bound_contribution() + Y.lower_bound_contribution()
        def df(x):
            Z.set_parameters([np.reshape(x, Z.get_shape(0))])
            g = Z.get_riemannian_gradient()
            return Z.get_gradient(g)[0]
        x0 = np.ravel(np.log([[2, 3, 7], [0.1, 3, 1]]))
        self.assertAllClose(
            misc.gradient(f, x0),
            np.ravel(df(x0))
        )

        pass