1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
################################################################################
# Copyright (C) 2014 Jaakko Luttinen
#
# This file is licensed under the MIT License.
################################################################################
"""
Unit tests for `multinomial` module.
"""
import numpy as np
import scipy
from bayespy.nodes import (Multinomial,
Dirichlet,
Mixture)
from bayespy.utils import random
from bayespy.utils.misc import TestCase
class TestMultinomial(TestCase):
"""
Unit tests for Multinomial node
"""
def test_init(self):
"""
Test the creation of multinomial nodes.
"""
# Some simple initializations
X = Multinomial(10, [0.1, 0.3, 0.6])
X = Multinomial(10, Dirichlet([5,4,3]))
# Check that plates are correct
X = Multinomial(10, [0.1, 0.3, 0.6], plates=(3,4))
self.assertEqual(X.plates,
(3,4))
X = Multinomial(10, 0.25*np.ones((2,3,4)))
self.assertEqual(X.plates,
(2,3))
n = 10 * np.ones((3,4), dtype=np.int64)
X = Multinomial(n, [0.1, 0.3, 0.6])
self.assertEqual(X.plates,
(3,4))
X = Multinomial(n, Dirichlet([2,1,9], plates=(3,4)))
self.assertEqual(X.plates,
(3,4))
# Probabilities not a vector
self.assertRaises(ValueError,
Multinomial,
10,
0.5)
# Invalid probability
self.assertRaises(ValueError,
Multinomial,
10,
[-0.5, 1.5])
self.assertRaises(ValueError,
Multinomial,
10,
[0.5, 1.5])
# Invalid number of trials
self.assertRaises(ValueError,
Multinomial,
-1,
[0.5, 0.5])
self.assertRaises(ValueError,
Multinomial,
8.5,
[0.5, 0.5])
# Inconsistent plates
self.assertRaises(ValueError,
Multinomial,
10,
0.25*np.ones((2,4)),
plates=(3,))
# Explicit plates too small
self.assertRaises(ValueError,
Multinomial,
10,
0.25*np.ones((2,4)),
plates=(1,))
pass
def test_moments(self):
"""
Test the moments of multinomial nodes.
"""
# Simple test
X = Multinomial(1, [0.7,0.2,0.1])
u = X._message_to_child()
self.assertEqual(len(u), 1)
self.assertAllClose(u[0],
[0.7,0.2,0.1])
# Test n
X = Multinomial(10, [0.7,0.2,0.1])
u = X._message_to_child()
self.assertAllClose(u[0],
[7,2,1])
# Test plates in p
n = np.random.randint(1, 10)
p = np.random.dirichlet([1,1], size=3)
X = Multinomial(n, p)
u = X._message_to_child()
self.assertAllClose(u[0],
p*n)
# Test plates in n
n = np.random.randint(1, 10, size=(3,))
p = np.random.dirichlet([1,1,1,1])
X = Multinomial(n, p)
u = X._message_to_child()
self.assertAllClose(u[0],
p*n[:,None])
# Test plates in p and n
n = np.random.randint(1, 10, size=(4,1))
p = np.random.dirichlet([1,1], size=3)
X = Multinomial(n, p)
u = X._message_to_child()
self.assertAllClose(u[0],
p*n[...,None])
# Test with Dirichlet prior
P = Dirichlet([7, 3])
logp = P._message_to_child()[0]
p0 = np.exp(logp[0]) / (np.exp(logp[0]) + np.exp(logp[1]))
p1 = np.exp(logp[1]) / (np.exp(logp[0]) + np.exp(logp[1]))
X = Multinomial(1, P)
u = X._message_to_child()
p = np.array([p0, p1])
self.assertAllClose(u[0],
p)
# Test with broadcasted plates
P = Dirichlet([7, 3], plates=(10,))
X = Multinomial(5, P)
u = X._message_to_child()
self.assertAllClose(u[0] * np.ones(X.get_shape(0)),
5*p*np.ones((10,1)))
pass
def test_lower_bound(self):
"""
Test lower bound for multinomial node.
"""
# Test for a bug found in multinomial
X = Multinomial(10, [0.3, 0.5, 0.2])
l = X.lower_bound_contribution()
self.assertAllClose(l, 0.0)
pass
def test_mixture(self):
"""
Test multinomial mixture
"""
p0 = [0.1, 0.5, 0.2, 0.2]
p1 = [0.5, 0.1, 0.1, 0.3]
p2 = [0.3, 0.2, 0.1, 0.4]
X = Mixture(2, Multinomial, 10, [p0, p1, p2])
u = X._message_to_child()
self.assertAllClose(u[0],
10*np.array(p2))
pass
def test_mixture_with_count_array(self):
"""
Test multinomial mixture
"""
p0 = [0.1, 0.5, 0.2, 0.2]
p1 = [0.5, 0.1, 0.1, 0.3]
p2 = [0.3, 0.2, 0.1, 0.4]
counts = [[10], [5], [3]]
X = Mixture(2, Multinomial, counts, [p0, p1, p2])
u = X._message_to_child()
self.assertAllClose(
u[0],
np.array(counts)*np.array(p2)
)
# Multi-mixture and count array
# Shape(p) = (2, 1, 3) + (4,)
p = [
[[
[0.1, 0.5, 0.2, 0.2],
[0.5, 0.1, 0.1, 0.3],
[0.3, 0.2, 0.1, 0.4],
]],
[[
[0.3, 0.2, 0.1, 0.4],
[0.5, 0.1, 0.2, 0.2],
[0.4, 0.1, 0.2, 0.3],
]],
]
# Shape(Z1) = (1, 3) + (2,) -> () + (2,)
Z1 = 1
# Shape(Z2) = (1,) + (3,) -> () + (3,)
Z2 = 2
# Shape(counts) = (5, 1)
counts = [[10], [5], [3], [2], [4]]
# Shape(X) = (5,) + (4,)
X = Mixture(
Z1,
Mixture,
Z2,
Multinomial,
counts,
p,
# NOTE: We mix over axes -3 and -1. But as we first mix over the
# default (-1), then the next mixing happens over -2 (because one
# axis was already dropped).
cluster_plate=-2,
)
self.assertAllClose(
X._message_to_child()[0],
np.array(counts)[:,0,None] * np.array(p)[Z1,:,Z2]
)
# Can't have non-singleton axis in counts over the mixed axis
p0 = [0.1, 0.5, 0.2, 0.2]
p1 = [0.5, 0.1, 0.1, 0.3]
p2 = [0.3, 0.2, 0.1, 0.4]
counts = [10, 5, 3]
self.assertRaises(
ValueError,
Mixture,
2,
Multinomial,
counts,
[p0, p1, p2],
)
return
|