1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
|
################################################################################
# Copyright (C) 2011-2015 Jaakko Luttinen
#
# This file is licensed under the MIT License.
################################################################################
import numpy as np
import warnings
import time
import h5py
import datetime
import tempfile
import scipy
import logging
from bayespy.utils import misc
from bayespy.inference.vmp.nodes.node import Node
class VB():
r"""
Variational Bayesian (VB) inference engine
Parameters
----------
nodes : nodes
Nodes that form the model. Must include all at least all stochastic
nodes of the model.
tol : double, optional
Convergence criterion. Tolerance for the relative change in the VB
lower bound.
autosave_filename : string, optional
Filename for automatic saving
autosave_iterations : int, optional
Iteration interval between each automatic saving
callback : callable, optional
Function which is called after each update iteration step
"""
def __init__(self,
*nodes,
tol=1e-5,
autosave_filename=None,
autosave_iterations=0,
use_logging=False,
user_data=None,
callback=None):
self.user_data = user_data
for (ind, node) in enumerate(nodes):
if not isinstance(node, Node):
raise ValueError("Argument number %d is not a node" % (ind+1))
if use_logging:
logger = logging.getLogger(__name__)
self.print = logger.info
else:
# By default, don't use logging, just print stuff
self.print = print
# Remove duplicate nodes
self.model = misc.unique(nodes)
self.ignore_bound_checks = False
self._figures = {}
self.iter = 0
self.annealing_changed = False
self.converged = False
self.L = np.array(())
self.cputime = np.array(())
self.l = dict(zip(self.model,
len(self.model)*[np.array([])]))
self.autosave_iterations = autosave_iterations
self.autosave_nodes = None
if not autosave_filename:
date = datetime.datetime.today().strftime('%Y%m%d%H%M%S')
prefix = 'vb_autosave_%s_' % date
tmpfile = tempfile.NamedTemporaryFile(prefix=prefix,
suffix='.hdf5')
self.autosave_filename = tmpfile.name
self.filename = None
else:
self.autosave_filename = autosave_filename
self.filename = autosave_filename
# Check uniqueness of the node names
names = [node.name for node in self.model]
if len(names) != len(self.model):
raise Exception("Use unique names for nodes.")
self.callback = callback
self.callback_output = None
self.tol = tol
def use_logging(self, use):
if use_logging:
logger = logging.getLogger(__name__)
self.print = logger.info
else:
# By default, don't use logging, just print stuff
self.print = print
return
def set_autosave(self, filename, iterations=None, nodes=None):
self.autosave_filename = filename
self.filename = filename
self.autosave_nodes = nodes
if iterations is not None:
self.autosave_iterations = iterations
def set_callback(self, callback):
self.callback = callback
def update(self, *nodes, repeat=1, plot=False, tol=None, verbose=True, tqdm=None):
# TODO/FIXME:
#
# If no nodes are given and thus everything is updated, the update order
# should be from down to bottom. Or something similar..
# By default, update all nodes
if len(nodes) == 0:
nodes = self.model
if plot is True:
plot_nodes = self.model
elif plot is False:
plot_nodes = []
else:
plot_nodes = [self[x] for x in plot]
converged = False
if tqdm is not None:
tqdm = tqdm(total=repeat)
i = 0
while repeat is None or i < repeat:
t = time.time()
# Update nodes
for node in nodes:
X = self[node]
if hasattr(X, 'update') and callable(X.update):
X.update()
if X in plot_nodes:
self.plot(X)
cputime = time.time() - t
i += 1
if tqdm is not None:
tqdm.update()
if self._end_iteration_step(None, cputime, tol=tol, verbose=verbose):
return
def has_converged(self, tol=None):
return self.converged
def compute_lowerbound(self, ignore_masked=True):
L = 0
for node in self.model:
L += node.lower_bound_contribution(ignore_masked=ignore_masked)
return L
def compute_lowerbound_terms(self, *nodes):
if len(nodes) == 0:
nodes = self.model
return {node: node.lower_bound_contribution()
for node in nodes}
def loglikelihood_lowerbound(self):
L = 0
for node in self.model:
lp = node.lower_bound_contribution()
L += lp
self.l[node][self.iter] = lp
return L
def plot_iteration_by_nodes(self, axes=None, diff=False):
"""
Plot the cost function per node during the iteration.
Handy tool for debugging.
"""
if axes is None:
import matplotlib.pyplot as plt
axes = plt.gca()
D = len(self.l)
N = self.iter + 1
if diff:
L = np.empty((N-1,D))
x = np.arange(N-1) + 2
else:
L = np.empty((N,D))
x = np.arange(N) + 1
legends = []
for (d, node) in enumerate(self.l):
if diff:
L[:,d] = np.diff(self.l[node][:N])
else:
L[:,d] = self.l[node][:N]
legends += [node.name]
axes.plot(x, L)
axes.legend(legends, loc='lower right')
axes.set_title('Lower bound contributions by nodes')
axes.set_xlabel('Iteration')
def get_iteration_by_nodes(self):
return self.l
def save(self, *nodes, filename=None):
if len(nodes) == 0:
nodes = self.model
else:
nodes = [self[node] for node in nodes if node is not None]
if self.iter == 0:
# Check HDF5 version.
if h5py.version.hdf5_version_tuple < (1,8,7):
warnings.warn("WARNING! Your HDF5 version is %s. HDF5 versions "
"<1.8.7 are not able to save empty arrays, thus "
"you may experience problems if you for instance "
"try to save before running any iteration steps."
% str(h5py.version.hdf5_version_tuple))
# By default, use the same file as for auto-saving
if not filename:
if self.autosave_filename:
filename = self.autosave_filename
else:
raise Exception("Filename must be given.")
# Open HDF5 file
h5f = h5py.File(filename, 'w')
try:
# Write each node
nodegroup = h5f.create_group('nodes')
for node in nodes:
if node.name == '':
raise Exception("In order to save nodes, they must have "
"(unique) names.")
if hasattr(node, '_save') and callable(node._save):
node._save(nodegroup.create_group(node.name))
# Write iteration statistics
misc.write_to_hdf5(h5f, self.L, 'L')
misc.write_to_hdf5(h5f, self.cputime, 'cputime')
misc.write_to_hdf5(h5f, self.iter, 'iter')
misc.write_to_hdf5(h5f, self.converged, 'converged')
if self.callback_output is not None:
misc.write_to_hdf5(h5f,
self.callback_output,
'callback_output')
boundgroup = h5f.create_group('boundterms')
for node in nodes:
misc.write_to_hdf5(boundgroup, self.l[node], node.name)
# Write user data
if self.user_data is not None:
user_data_group = h5f.create_group('user_data')
for (key, value) in self.user_data.items():
user_data_group[key] = value
finally:
# Close file
h5f.close()
@staticmethod
def load_user_data(filename):
f = h5py.File(filename, 'r')
try:
group = f['user_data']
for (key, value) in group.items():
user_data['key'] = value[...]
except:
raise
finally:
f.close()
return
def load(self, *nodes, filename=None, nodes_only=False):
# By default, use the same file as for auto-saving
if not filename:
if self.autosave_filename:
filename = self.autosave_filename
else:
raise Exception("Filename must be given.")
# Open HDF5 file
h5f = h5py.File(filename, 'r')
try:
# Get nodes to load
if len(nodes) == 0:
nodes = self.model
else:
nodes = [self[node] for node in nodes if node is not None]
# Read each node
for node_id in nodes:
node = self[node_id]
if node.name == '':
h5f.close()
raise Exception("In order to load nodes, they must have "
"(unique) names.")
if hasattr(node, 'load') and callable(node.load):
try:
node._load(h5f['nodes'][node.name])
except KeyError:
h5f.close()
raise Exception("File does not contain variable %s"
% node.name)
# Read iteration statistics
if not nodes_only:
self.L = h5f['L'][...]
self.cputime = h5f['cputime'][...]
self.iter = h5f['iter'][...]
self.converged = h5f['converged'][...]
for node in nodes:
self.l[node] = h5f['boundterms'][node.name][...]
try:
self.callback_output = h5f['callback_output'][...]
except KeyError:
pass
finally:
# Close file
h5f.close()
def __getitem__(self, name):
if name in self.model:
return name
else:
# Dictionary for mapping node names to nodes
dictionary = {node.name: node for node in self.model}
return dictionary[name]
def plot(self, *nodes, **kwargs):
"""
Plot the distribution of the given nodes (or all nodes)
"""
if len(nodes) == 0:
nodes = self.model
for node in nodes:
node = self[node]
if node.has_plotter():
import matplotlib.pyplot as plt
try:
fignum = self._figures[node]
except KeyError:
fig = plt.figure()
self._figures[node] = fig.number
else:
fig = plt.figure(num=fignum)
fig.clf()
node.plot(fig=fig, **kwargs)
fig.canvas.draw()
@property
def ignore_bound_checks(self):
return self.__ignore_bound_checks
@ignore_bound_checks.setter
def ignore_bound_checks(self, ignore):
self.__ignore_bound_checks = ignore
def get_gradients(self, *nodes, euclidian=False):
"""
Computes gradients (both Riemannian and normal)
"""
rg = [self[node].get_riemannian_gradient() for node in nodes]
if euclidian:
g = [self[node].get_gradient(rg_x)
for (node, rg_x) in zip(nodes, rg)]
return (rg, g)
else:
return rg
def get_parameters(self, *nodes):
"""
Get parameters of the nodes
"""
return [self[node].get_parameters()
for node in nodes]
def set_parameters(self, x, *nodes):
"""
Set parameters of the nodes
"""
for (node, xi) in zip(nodes, x):
self[node].set_parameters(xi)
return
def gradient_step(self, *nodes, scale=1.0):
"""
Update nodes by taking a gradient ascent step
"""
p = self.add(self.get_parameters(*nodes),
self.get_gradients(*nodes),
scale=scale)
self.set_parameters(p, *nodes)
return
def dot(self, x1, x2):
"""
Computes dot products of given vectors (in parameter format)
"""
v = 0
# Loop over nodes
for (y1, y2) in zip(x1, x2):
# Loop over parameters
for (z1, z2) in zip(y1, y2):
v += np.dot(np.ravel(z1), np.ravel(z2))
return v
def add(self, x1, x2, scale=1):
"""
Add two vectors (in parameter format)
"""
v = []
# Loop over nodes
for (y1, y2) in zip(x1, x2):
v.append([])
# Loop over parameters
for (z1, z2) in zip(y1, y2):
v[-1].append(z1 + scale*z2)
return v
def optimize(self, *nodes, maxiter=10, verbose=True, method='fletcher-reeves',
riemannian=True, collapsed=None, tol=None):
"""
Optimize nodes using Riemannian conjugate gradient
"""
method = method.lower()
if collapsed is None:
collapsed = []
scale = 1.0
p = self.get_parameters(*nodes)
dd_prev = 0
for i in range(maxiter):
t = time.time()
# Get gradients
if riemannian and method == 'gradient':
rg = self.get_gradients(*nodes, euclidian=False)
g1 = rg
g2 = rg
else:
(rg, g) = self.get_gradients(*nodes, euclidian=True)
if riemannian:
g1 = g
g2 = rg
else:
g1 = g
g2 = g
if method == 'gradient':
b = 0
elif method == 'fletcher-reeves':
dd_curr = self.dot(g1, g2)
if dd_prev == 0:
b = 0
else:
b = dd_curr / dd_prev
dd_prev = dd_curr
else:
raise Exception("Unknown optimization method: %s" % (method))
if b:
s = self.add(g2, s, scale=b)
else:
s = g2
success = False
while not success:
p_new = self.add(p, s, scale=scale)
try:
self.set_parameters(p_new, *nodes)
except:
if verbose:
self.print("CG update was unsuccessful, using gradient and resetting CG")
if s is g2:
scale = scale / 2
dd_prev = 0
s = g2
continue
# Update collapsed variables
collapsed_params = self.get_parameters(*collapsed)
try:
for node in collapsed:
self[node].update()
except:
self.set_parameters(collapsed_params, *collapsed)
if verbose:
self.print("Collapsed node update node failed, reset CG")
if s is g2:
scale = scale / 2
dd_prev = 0
s = g2
continue
L = self.compute_lowerbound()
bound_decreased = (
self.iter > 0 and
L < self.L[self.iter-1] and
not np.allclose(L, self.L[self.iter-1], rtol=1e-8)
)
if np.isnan(L) or bound_decreased:
# Restore the state of the collapsed nodes to what it was
# before updating them
self.set_parameters(collapsed_params, *collapsed)
if s is g2:
scale = scale / 2
if verbose:
self.print(
"Gradient ascent decreased lower bound from {0} to {1}, halfing step length"
.format(
self.L[self.iter-1],
L,
)
)
else:
if scale < 2 ** (-10):
if verbose:
self.print(
"CG decreased lower bound from {0} to {1}, reset CG."
.format(
self.L[self.iter-1],
L,
)
)
dd_prev = 0
s = g2
else:
scale = scale / 2
if verbose:
self.print(
"CG decreased lower bound from {0} to {1}, halfing step length"
.format(
self.L[self.iter-1],
L,
)
)
continue
success = True
scale = scale * np.sqrt(2)
p = p_new
cputime = time.time() - t
if self._end_iteration_step('OPT', cputime, tol=tol, verbose=verbose):
break
def pattern_search(self, *nodes, collapsed=None, maxiter=3):
"""Perform simple pattern search :cite:`Honkela:2003`.
Some of the variables can be collapsed.
"""
if collapsed is None:
collapsed = []
t = time.time()
# Update all nodes
for x in nodes:
self[x].update()
for x in collapsed:
self[x].update()
# Current parameter values
p0 = self.get_parameters(*nodes)
# Update optimized nodes
for x in nodes:
self[x].update()
# New parameter values
p1 = self.get_parameters(*nodes)
# Search direction
dp = self.add(p1, p0, scale=-1)
# Cost function for pattern search
def cost(alpha):
p_new = self.add(p1, dp, scale=alpha)
try:
self.set_parameters(p_new, *nodes)
except:
return np.inf
# Update collapsed nodes
for x in collapsed:
self[x].update()
return -self.compute_lowerbound()
# Optimize step length
res = scipy.optimize.minimize_scalar(cost, bracket=[0, 3], options={'maxiter':maxiter})
# Set found parameter values
p_new = self.add(p1, dp, scale=res.x)
self.set_parameters(p_new, *nodes)
# Update collapsed nodes
for x in collapsed:
self[x].update()
cputime = time.time() - t
self._end_iteration_step('PS', cputime)
def set_annealing(self, annealing):
"""
Set deterministic annealing from range (0, 1].
With 1, no annealing, standard updates.
With smaller values, entropy has more weight and model
probability equations less. With 0, one would obtain improper
uniform distributions.
"""
for node in self.model:
node.annealing = annealing
self.annealing_changed = True
self.converged = False
return
def _append_iterations(self, iters):
"""
Append some arrays for more iterations
"""
self.L = np.append(self.L, misc.nans(iters))
self.cputime = np.append(self.cputime, misc.nans(iters))
for (node, l) in self.l.items():
self.l[node] = np.append(l, misc.nans(iters))
return
def _end_iteration_step(self, method, cputime, tol=None, verbose=True, bound_cpu_time=True):
"""
Do some routines after each iteration step
"""
if self.iter >= len(self.L):
self._append_iterations(100)
# Call the custom function provided by the user
if callable(self.callback):
z = self.callback()
if z is not None:
z = np.array(z)[...,np.newaxis]
if self.callback_output is None:
self.callback_output = z
else:
self.callback_output = np.concatenate((self.callback_output,z),
axis=-1)
t = time.time()
L = self.loglikelihood_lowerbound()
if bound_cpu_time:
cputime += time.time() - t
self.cputime[self.iter] = cputime
self.L[self.iter] = L
if verbose:
if method:
self.print("Iteration %d (%s): loglike=%e (%.3f seconds)"
% (self.iter+1, method, L, cputime))
else:
self.print("Iteration %d: loglike=%e (%.3f seconds)"
% (self.iter+1, L, cputime))
# Check the progress of the iteration
self.converged = False
if not self.ignore_bound_checks and not self.annealing_changed and self.iter > 0:
# Check for errors
if self.L[self.iter-1] - L > 1e-6:
L_diff = (self.L[self.iter-1] - L)
warnings.warn("Lower bound decreased %e! Bug somewhere or "
"numerical inaccuracy?" % L_diff)
# Check for convergence
L0 = self.L[self.iter-1]
L1 = self.L[self.iter]
if tol is None:
tol = self.tol
div = 0.5 * (abs(L0) + abs(L1))
if (L1 - L0) / div < tol:
#if (L1 - L0) / div < tol or L1 - L0 <= 0:
if verbose:
self.print("Converged at iteration %d." % (self.iter+1))
self.converged = True
# Auto-save, if requested
if (self.autosave_iterations > 0
and np.mod(self.iter+1, self.autosave_iterations) == 0):
if self.autosave_nodes is not None:
self.save(*self.autosave_nodes, filename=self.autosave_filename)
else:
self.save(filename=self.autosave_filename)
if verbose:
self.print('Auto-saved to %s' % self.autosave_filename)
self.annealing_changed = False
self.iter += 1
return self.converged
|