1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
|
################################################################################
# Copyright (C) 2013 Jaakko Luttinen
#
# This file is licensed under the MIT License.
################################################################################
"""
Package for nodes used to construct the model.
Stochastic nodes
================
.. currentmodule:: bayespy.nodes
Nodes for Gaussian variables:
.. autosummary::
:toctree: generated/
Gaussian
GaussianARD
Nodes for precision and scale variables:
.. autosummary::
:toctree: generated/
Gamma
Wishart
Exponential
Nodes for modelling Gaussian and precision variables jointly (useful as prior
for Gaussian nodes):
.. autosummary::
:toctree: generated/
GaussianGamma
GaussianWishart
Nodes for discrete count variables:
.. autosummary::
:toctree: generated/
Bernoulli
Binomial
Categorical
Multinomial
Poisson
Nodes for probabilities:
.. autosummary::
:toctree: generated/
Beta
Dirichlet
Nodes for dynamic variables:
.. autosummary::
:toctree: generated/
CategoricalMarkovChain
GaussianMarkovChain
SwitchingGaussianMarkovChain
VaryingGaussianMarkovChain
Other stochastic nodes:
.. autosummary::
:toctree: generated/
Mixture
Point-estimation nodes:
.. autosummary::
MaximumLikelihood
Concentration
GammaShape
Deterministic nodes
===================
.. autosummary::
:toctree: generated/
Dot
SumMultiply
Add
Gate
Take
Function
ConcatGaussian
Choose
"""
# Currently, model construction and the inference network are not separated so
# the model is constructed using variational message passing nodes.
from bayespy.inference.vmp.nodes import *
|