File: __init__.py

package info (click to toggle)
python-bayespy 0.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,132 kB
  • sloc: python: 22,402; makefile: 156
file content (105 lines) | stat: -rw-r--r-- 1,729 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
################################################################################
# Copyright (C) 2013 Jaakko Luttinen
#
# This file is licensed under the MIT License.
################################################################################


"""
Package for nodes used to construct the model.

Stochastic nodes
================

.. currentmodule:: bayespy.nodes

Nodes for Gaussian variables:

.. autosummary::
   :toctree: generated/

   Gaussian
   GaussianARD

Nodes for precision and scale variables:

.. autosummary::
   :toctree: generated/

   Gamma
   Wishart
   Exponential

Nodes for modelling Gaussian and precision variables jointly (useful as prior
for Gaussian nodes):

.. autosummary::
   :toctree: generated/

   GaussianGamma
   GaussianWishart

Nodes for discrete count variables:

.. autosummary::
   :toctree: generated/

   Bernoulli
   Binomial
   Categorical
   Multinomial
   Poisson

Nodes for probabilities:

.. autosummary::
   :toctree: generated/

   Beta
   Dirichlet

Nodes for dynamic variables:

.. autosummary::
   :toctree: generated/

   CategoricalMarkovChain
   GaussianMarkovChain
   SwitchingGaussianMarkovChain
   VaryingGaussianMarkovChain

Other stochastic nodes:

.. autosummary::
   :toctree: generated/

   Mixture

Point-estimation nodes:

.. autosummary::

   MaximumLikelihood
   Concentration
   GammaShape

Deterministic nodes
===================

.. autosummary::
   :toctree: generated/

   Dot
   SumMultiply
   Add
   Gate
   Take
   Function
   ConcatGaussian
   Choose
"""

# Currently, model construction and the inference network are not separated so
# the model is constructed using variational message passing nodes.
from bayespy.inference.vmp.nodes import *