File: misc.py

package info (click to toggle)
python-bayespy 0.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,132 kB
  • sloc: python: 22,402; makefile: 156
file content (1558 lines) | stat: -rw-r--r-- 44,929 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
################################################################################
# Copyright (C) 2011-2013 Jaakko Luttinen
#
# This file is licensed under the MIT License.
################################################################################


"""
General numerical functions and methods.

"""
from scipy.optimize import approx_fprime
import functools
import itertools
import operator

import sys
import getopt

import numpy as np
import scipy as sp
import scipy.linalg as linalg
import scipy.special as special
import scipy.optimize as optimize
import scipy.sparse as sparse

import tempfile as tmp

import unittest
from numpy import testing


def flatten_axes(X, *ndims):
    ndim = sum(ndims)
    if np.ndim(X) < ndim:
        raise ValueError("Not enough ndims in the array")
    if len(ndims) == 0:
        return X
    shape = np.shape(X)
    i = np.ndim(X) - ndim
    plates = shape[:i]
    nd_sums = i + np.cumsum((0,) + ndims)
    sizes = tuple(
        np.prod(shape[i:j])
        for (i, j) in zip(nd_sums[:-1], nd_sums[1:])
    )
    return np.reshape(X, plates + sizes)


def reshape_axes(X, *shapes):
    ndim = len(shapes)
    if np.ndim(X) < ndim:
        raise ValueError("Not enough ndims in the array")
    i = np.ndim(X) - ndim
    sizes = tuple(np.prod(sh) for sh in shapes)
    if np.shape(X)[i:] != sizes:
        raise ValueError("Shapes inconsistent with sizes")
    shape = tuple(i for sh in shapes for i in sh)
    return np.reshape(X, np.shape(X)[:i] + shape)


def find_set_index(index, set_lengths):
    """
    Given set sizes and an index, returns the index of the set

    The given index is for the concatenated list of the sets.
    """
    # Negative indices to positive
    if index < 0:
        index += np.sum(set_lengths)

    # Indices must be on range (0, N-1)
    if index >= np.sum(set_lengths) or index < 0:
        raise Exception("Index out bounds")

    return np.searchsorted(np.cumsum(set_lengths), index, side='right')


def parse_command_line_arguments(mandatory_args, *optional_args_list, argv=None):
    """
    Parse command line arguments of style "--parameter=value".

    Parameter specification is tuple: (name, converter, description).

    Some special handling:

    * If converter is None, the command line does not accept any value
      for it, but instead use either "--option" to enable or
      "--no-option" to disable.

    * If argument name contains hyphens, those are converted to
      underscores in the keys of the returned dictionaries.

    Parameters
    ----------

    mandatory_args : list of tuples
        Specs for mandatory arguments

    optional_args_list : list of lists of tuples
        Specs for each optional arguments set

    argv : list of strings (optional)
        The command line arguments. By default, read sys.argv.

    Returns
    -------

    args : dictionary
        The parsed mandatory arguments

    kwargs : dictionary
        The parsed optional arguments

    Examples
    --------

    >>> from pprint import pprint as print
    >>> from bayespy.utils import misc
    >>> (args, kwargs) = misc.parse_command_line_arguments(
    ...     # Mandatory arguments
    ...     [
    ...         ('name',     str,  "Full name"),
    ...         ('age',      int,  "Age (years)"),
    ...         ('employed', None, "Working"),
    ...     ],
    ...     # Optional arguments
    ...     [
    ...         ('phone',          str, "Phone number"),
    ...         ('favorite-color', str, "Favorite color")
    ...     ],
    ...     argv=['--name=John Doe',
    ...           '--age=42',
    ...           '--no-employed',
    ...           '--favorite-color=pink']
    ... )
    >>> print(args)
    {'age': 42, 'employed': False, 'name': 'John Doe'}
    >>> print(kwargs)
    {'favorite_color': 'pink'}

    It is possible to have several optional argument sets:

    >>> (args, kw_info, kw_fav) = misc.parse_command_line_arguments(
    ...     # Mandatory arguments
    ...     [
    ...         ('name',     str,  "Full name"),
    ...     ],
    ...     # Optional arguments (contact information)
    ...     [
    ...         ('phone', str, "Phone number"),
    ...         ('email', str, "E-mail address")
    ...     ],
    ...     # Optional arguments (preferences)
    ...     [
    ...         ('favorite-color', str, "Favorite color"),
    ...         ('favorite-food',  str, "Favorite food")
    ...     ],
    ...     argv=['--name=John Doe',
    ...           '--favorite-color=pink',
    ...           '--email=john.doe@email.com',
    ...           '--favorite-food=spaghetti']
    ... )
    >>> print(args)
    {'name': 'John Doe'}
    >>> print(kw_info)
    {'email': 'john.doe@email.com'}
    >>> print(kw_fav)
    {'favorite_color': 'pink', 'favorite_food': 'spaghetti'}

    """

    if argv is None:
        argv = sys.argv[1:]

    mandatory_arg_names = [arg[0] for arg in mandatory_args]

    # Sizes of each optional argument list
    optional_args_lengths = [len(opt_args) for opt_args in optional_args_list]

    all_args = mandatory_args + functools.reduce(operator.add, optional_args_list, [])

    # Create a list of arg names for the getopt parser
    arg_list = []
    for arg in all_args:
        arg_name = arg[0].lower()
        if arg[1] is None:
            arg_list.append(arg_name)
            arg_list.append("no-" + arg_name)
        else:
            arg_list.append(arg_name + "=")

    if len(set(arg_list)) < len(arg_list):
        raise Exception("Argument names are not unique")

    # Use getopt parser
    try:
        (cl_opts, cl_args) = getopt.getopt(argv, "", arg_list)
    except getopt.GetoptError as err:
        print(err)
        print("Usage:")
        for arg in all_args:
            if arg[1] is None:
                print("--{0}\t{1}".format(arg[0].lower(),
                                          arg[2]))
            else:
                print("--{0}=<{1}>\t{2}".format(arg[0].lower(),
                                               str(arg[1].__name__).upper(),
                                               arg[2]))
        sys.exit(2)

    # A list of all valid flag names: ["--first-argument", "--another-argument"]
    valid_flags = []
    valid_flag_arg_indices = []
    for (ind, arg) in enumerate(all_args):
        valid_flags.append("--" + arg[0].lower())
        valid_flag_arg_indices.append(ind)
        if arg[1] is None:
            valid_flags.append("--no-" + arg[0].lower())
            valid_flag_arg_indices.append(ind)

    # Go through all the given command line arguments and store them in the
    # correct dictionaries
    args = dict()
    kwargs_list = [dict() for i in range(len(optional_args_list))]
    handled_arg_names = []
    for (cl_opt, cl_arg) in cl_opts:

        # Get the index of the argument
        try:
            ind = valid_flag_arg_indices[valid_flags.index(cl_opt.lower())]
        except ValueError:
            print("Invalid command line argument: {0}".format(cl_opt))
            raise Exception("Invalid argument given")

        # Check that the argument wasn't already given and then mark the
        # argument as handled
        if all_args[ind][0] in handled_arg_names:
            raise Exception("Same argument given multiple times")
        else:
            handled_arg_names.append(all_args[ind][0])

        # Check whether to add the argument to the mandatory or optional
        # argument dictionary
        if ind < len(mandatory_args):
            dict_to = args
        else:
            dict_index = find_set_index(ind - len(mandatory_args),
                                        optional_args_lengths)
            dict_to = kwargs_list[dict_index]

        # Convert and store the argument
        convert_function = all_args[ind][1]
        arg_name = all_args[ind][0].replace('-', '_')
        if convert_function is None:
            if cl_opt[:5] == "--no-":
                dict_to[arg_name] = False
            else:
                dict_to[arg_name] = True
        else:
            dict_to[arg_name] = convert_function(cl_arg)

    # Check if some mandatory argument was not given
    for arg_name in mandatory_arg_names:
        if arg_name not in handled_arg_names:
            raise Exception("Mandatory argument --{0} not given".format(arg_name))

    return tuple([args] + kwargs_list)


def composite_function(function_list):
    """
    Construct a function composition from a list of functions.

    Given a list of functions [f,g,h], constructs a function :math:`h \circ g
    \circ f`.  That is, returns a function :math:`z`, for which :math:`z(x) =
    h(g(f(x)))`.
    """
    def composite(X):
        for function in function_list:
            X = function(X)
        return X
    return composite


def ceildiv(a, b):
    """
    Compute a divided by b and rounded up.
    """
    return -(-a // b)

def rmse(y1, y2, axis=None):
    return np.sqrt(np.mean((y1-y2)**2, axis=axis))

def is_callable(f):
    return hasattr(f, '__call__')

def atleast_nd(X, d):
    if np.ndim(X) < d:
        sh = (d-np.ndim(X))*(1,) + np.shape(X)
        X = np.reshape(X, sh)
    return X

def T(X):
    """
    Transpose the matrix.
    """
    return np.swapaxes(X, -1, -2)

class TestCase(unittest.TestCase):
    """
    Simple base class for unit testing.

    Adds NumPy's features to Python's unittest.
    """

    def assertAllClose(self, A, B,
                       msg="Arrays not almost equal",
                       rtol=1e-4,
                       atol=0):

        self.assertEqual(np.shape(A), np.shape(B), msg=msg)
        testing.assert_allclose(A, B, err_msg=msg, rtol=rtol, atol=atol)
        pass

    def assertArrayEqual(self, A, B, msg="Arrays not equal"):
        self.assertEqual(np.shape(A), np.shape(B), msg=msg)
        testing.assert_array_equal(A, B, err_msg=msg)
        pass

    def assertMessage(self, M1, M2):

        if len(M1) != len(M2):
            self.fail("Message lists have different lengths")

        for (m1, m2) in zip(M1, M2):
            self.assertAllClose(m1, m2)

        pass

    def assertMessageToChild(self, X, u):
        self.assertMessage(X._message_to_child(), u)
        pass


    def _get_pack_functions(self, plates, dims):

        inds = np.concatenate(
            [
                [0],
                np.cumsum(
                    [
                        np.prod(dimi) * np.prod(plates)
                        for dimi in dims
                    ]
                )
            ]
        ).astype(int)

        def pack(x):
            return [
                np.reshape(x[start:end], plates + dimi)
                for (start, end, dimi) in zip(inds[:-1], inds[1:], dims)
            ]

        def unpack(u):
            return np.concatenate(
                [
                    np.broadcast_to(ui, plates + dimi).ravel()
                    for (ui, dimi) in zip(u, dims)
                ]
            )

        return (pack, unpack)


    def assert_message_to_parent(self, child, parent, postprocess=lambda u: u,
                                 eps=1e-6, rtol=1e-4, atol=0):

        (pack, unpack) = self._get_pack_functions(parent.plates, parent.dims)

        def cost(x):
            parent.u = pack(x)
            return child.lower_bound_contribution()

        d = postprocess(pack(unpack(parent._message_from_children())))

        d_num = postprocess(
            pack(
                approx_fprime(
                    unpack(parent.u),
                    cost,
                    eps
                )
            )
        )

        # for (i, j) in zip(postprocess(pack(d)), postprocess(pack(d_num))):
        #     print(i)
        #     print(j)

        assert len(d_num) == len(d)

        for i in range(len(d)):
            self.assertAllClose(d[i], d_num[i], rtol=rtol, atol=atol)


    def assert_moments(self, node, postprocess=lambda u: u, eps=1e-6,
                       rtol=1e-4, atol=0):

        (u, g) = node._distribution.compute_moments_and_cgf(node.phi)

        (pack, unpack) = self._get_pack_functions(node.plates, node.dims)

        def cost(x):
            (_, g) = node._distribution.compute_moments_and_cgf(pack(x))
            return -np.sum(g)

        u_num = pack(
            approx_fprime(
                unpack(node.phi),
                cost,
                eps
            )
        )

        assert len(u_num) == len(u)

        up = postprocess(u)
        up_num = postprocess(u_num)

        for i in range(len(up)):
            self.assertAllClose(up[i], up_num[i], rtol=rtol, atol=atol)

        pass



def symm(X):
    """
    Make X symmetric.
    """
    return 0.5 * (X + np.swapaxes(X, -1, -2))

def unique(l):
    """
    Remove duplicate items from a list while preserving order.
    """
    seen = set()
    seen_add = seen.add
    return [ x for x in l if x not in seen and not seen_add(x)]

def tempfile(prefix='', suffix=''):
    return tmp.NamedTemporaryFile(prefix=prefix, suffix=suffix).name

def write_to_hdf5(group, data, name):
    """
    Writes the given array into the HDF5 file.
    """
    try:
        # Try using compression. It doesn't work for scalars.
        group.create_dataset(name,
                             data=data,
                             compression='gzip')
    except TypeError:
        group.create_dataset(name,
                             data=data)
    except ValueError:
        raise ValueError('Could not write %s' % data)


def nans(size=()):
    return np.tile(np.nan, size)

def trues(shape):
    return np.ones(shape, dtype=np.bool)

def identity(*shape):
    return np.reshape(np.identity(np.prod(shape)), shape+shape)

def array_to_scalar(x):
    # This transforms an N-dimensional array to a scalar. It's most
    # useful when you know that the array has only one element and you
    # want it out as a scalar.
    return np.ravel(x)[0]

#def diag(x):


def put(x, indices, y, axis=-1, ufunc=np.add):
    """A kind of inverse mapping of `np.take`

    In a simple, the operation can be thought as:

    .. code-block:: python

       x[indices] += y

    with the exception that all entries of `y` are used instead of just the
    first occurence corresponding to a particular element. That is, the results
    are accumulated, and the accumulation function can be changed by providing
    `ufunc`. For instance, `np.multiply` corresponds to:

    .. code-block:: python

       x[indices] *= y

    Whereas `np.take` picks indices along an axis and returns the resulting
    array, `put` similarly picks indices along an axis but accumulates the
    given values to those entries.

    Example
    -------

    .. code-block:: python

       >>> x = np.zeros(3)
       >>> put(x, [2, 2, 0, 2, 2], 1)
       array([1., 0., 4.])

    `y` must broadcast to the shape of `np.take(x, indices)`:

    .. code-block:: python

       >>> x = np.zeros((3,4))
       >>> put(x, [[2, 2, 0, 2, 2], [1, 2, 1, 2, 1]], np.ones((2,1,4)), axis=0)
       array([[1., 1., 1., 1.],
              [3., 3., 3., 3.],
              [6., 6., 6., 6.]])

    """
    #x = np.copy(x)
    ndim = np.ndim(x)
    if not isinstance(axis, int):
        raise ValueError("Axis must be an integer")

    # Make axis index positive: [0, ..., ndim-1]
    if axis < 0:
        axis = axis + ndim
    if axis < 0 or axis >= ndim:
        raise ValueError("Axis out of bounds")

    indices = axis*(slice(None),) + (indices,) + (ndim-axis-1)*(slice(None),)
    #y = add_trailing_axes(y, ndim-axis-1)
    ufunc.at(x, indices, y)
    return x


def put_simple(y, indices, axis=-1, length=None):
    """An inverse operation of `np.take` with accumulation and broadcasting.

    Compared to `put`, the difference is that the result array is initialized
    with an array of zeros whose shape is determined automatically and `np.add`
    is used as the accumulator.

    """

    if length is None:
        # Try to determine the original length of the axis by finding the
        # largest index. It is more robust to give the length explicitly.
        indices = np.copy(indices)
        indices[indices<0] = np.abs(indices[indices<0]) - 1
        length = np.amax(indices) + 1

    if not isinstance(axis, int):
        raise ValueError("Axis must be an integer")

    # Make axis index negative: [-ndim, ..., -1]
    if axis >= 0:
        raise ValueError("Axis index must be negative")

    y = atleast_nd(y, abs(axis)-1)
    shape_y = np.shape(y)
    end_before = axis - np.ndim(indices) + 1
    start_after = axis + 1
    if end_before == 0:
        shape_x = shape_y + (length,)
    elif start_after == 0:
        shape_x = shape_y[:end_before] + (length,)
    else:
        shape_x = shape_y[:end_before] + (length,) + shape_y[start_after:]

    x = np.zeros(shape_x)

    return put(x, indices, y, axis=axis)


def grid(x1, x2):
    """ Returns meshgrid as a (M*N,2)-shape array. """
    (X1, X2) = np.meshgrid(x1, x2)
    return np.hstack((X1.reshape((-1,1)),X2.reshape((-1,1))))


# class CholeskyDense():

#     def __init__(self, K):
#         self.U = linalg.cho_factor(K)

#     def solve(self, b):
#         if sparse.issparse(b):
#             b = b.toarray()
#         return linalg.cho_solve(self.U, b)

#     def logdet(self):
#         return 2*np.sum(np.log(np.diag(self.U[0])))

#     def trace_solve_gradient(self, dK):
#         return np.trace(self.solve(dK))

# class CholeskySparse():

#     def __init__(self, K):
#         self.LD = cholmod.cholesky(K)

#     def solve(self, b):
#         if sparse.issparse(b):
#             b = b.toarray()
#         return self.LD.solve_A(b)

#     def logdet(self):
#         return self.LD.logdet()
#         #np.sum(np.log(LD.D()))

#     def trace_solve_gradient(self, dK):
#         # WTF?! numpy.multiply doesn't work for two sparse
#         # matrices.. It returns a result but it is incorrect!

#         # Use the identity trace(K\dK)=sum(inv(K).*dK) by computing
#         # the sparse inverse (lower triangular part)
#         iK = self.LD.spinv(form='lower')
#         return (2*iK.multiply(dK).sum()
#                 - iK.diagonal().dot(dK.diagonal()))
#         # Multiply by two because of symmetry (remove diagonal once
#         # because it was taken into account twice)
#         #return np.multiply(self.LD.inv().todense(),dK.todense()).sum()
#         #return self.LD.inv().multiply(dK).sum() # THIS WORKS
#         #return np.multiply(self.LD.inv(),dK).sum() # THIS NOT WORK!! WTF??
#         iK = self.LD.spinv()
#         return iK.multiply(dK).sum()
#         #return (2*iK.multiply(dK).sum()
#         #        - iK.diagonal().dot(dK.diagonal()))
#         #return (2*np.multiply(iK, dK).sum()
#         #        - iK.diagonal().dot(dK.diagonal())) # THIS NOT WORK!!
#         #return np.trace(self.solve(dK))


# def cholesky(K):
#     if isinstance(K, np.ndarray):
#         return CholeskyDense(K)
#     elif sparse.issparse(K):
#         return CholeskySparse(K)
#     else:
#         raise Exception("Unsupported covariance matrix type")

# Computes log probability density function of the Gaussian
# distribution
def gaussian_logpdf(y_invcov_y,
                    y_invcov_mu,
                    mu_invcov_mu,
                    logdetcov,
                    D):

    return (-0.5*D*np.log(2*np.pi)
            -0.5*logdetcov
            -0.5*y_invcov_y
            +y_invcov_mu
            -0.5*mu_invcov_mu)


def zipper_merge(*lists):
    """
    Combines lists by alternating elements from them.

    Combining lists [1,2,3], ['a','b','c'] and [42,666,99] results in
    [1,'a',42,2,'b',666,3,'c',99]

    The lists should have equal length or they are assumed to have the length of
    the shortest list.

    This is known as alternating merge or zipper merge.
    """

    return list(sum(zip(*lists), ()))

def remove_whitespace(s):
    return ''.join(s.split())

def is_numeric(a):
    return (np.isscalar(a) or
            isinstance(a, list) or
            isinstance(a, np.ndarray))

def is_scalar_integer(x):
    t = np.asanyarray(x).dtype.type
    return np.ndim(x) == 0 and issubclass(t, np.integer)


def isinteger(x):
    t = np.asanyarray(x).dtype.type
    return ( issubclass(t, np.integer) or issubclass(t, np.bool_) )


def is_string(s):
    return isinstance(s, str)

def multiply_shapes(*shapes):
    """
    Compute element-wise product of lists/tuples.

    Shorter lists are concatenated with leading 1s in order to get lists with
    the same length.
    """

    # Make the shapes equal length
    shapes = make_equal_length(*shapes)

    # Compute element-wise product
    f = lambda X,Y: (x*y for (x,y) in zip(X,Y))
    shape = functools.reduce(f, shapes)

    return tuple(shape)

def make_equal_length(*shapes):
    """
    Make tuples equal length.

    Add leading 1s to shorter tuples.
    """

    # Get maximum length
    max_len = max((len(shape) for shape in shapes))

    # Make the shapes equal length
    shapes = ((1,)*(max_len-len(shape)) + tuple(shape) for shape in shapes)

    return shapes


def make_equal_ndim(*arrays):
    """
    Add trailing unit axes so that arrays have equal ndim
    """
    shapes = [np.shape(array) for array in arrays]
    shapes = make_equal_length(*shapes)
    arrays = [np.reshape(array, shape)
              for (array, shape) in zip(arrays, shapes)]
    return arrays


def sum_to_dim(A, dim):
    """
    Sum leading axes of A such that A has dim dimensions.
    """
    dimdiff = np.ndim(A) - dim
    if dimdiff > 0:
        axes = np.arange(dimdiff)
        A = np.sum(A, axis=axes)
    return A


def broadcasting_multiplier(plates, *args):
    """
    Compute the plate multiplier for given shapes.

    The first shape is compared to all other shapes (using NumPy
    broadcasting rules). All the elements which are non-unit in the first
    shape but 1 in all other shapes are multiplied together.

    This method is used, for instance, for computing a correction factor for
    messages to parents: If this node has non-unit plates that are unit
    plates in the parent, those plates are summed. However, if the message
    has unit axis for that plate, it should be first broadcasted to the
    plates of this node and then summed to the plates of the parent. In
    order to avoid this broadcasting and summing, it is more efficient to
    just multiply by the correct factor. This method computes that
    factor. The first argument is the full plate shape of this node (with
    respect to the parent). The other arguments are the shape of the message
    array and the plates of the parent (with respect to this node).
    """

    # Check broadcasting of the shapes
    for arg in args:
        broadcasted_shape(plates, arg)

    # Check that each arg-plates are a subset of plates?
    for arg in args:
        if not is_shape_subset(arg, plates):
            print("Plates:", plates)
            print("Args:", args)
            raise ValueError("The shapes in args are not a sub-shape of "
                             "plates")

    r = 1
    for j in range(-len(plates),0):
        mult = True
        for arg in args:
            # if -j <= len(arg) and arg[j] != 1:
            if not (-j > len(arg) or arg[j] == 1):
                mult = False
        if mult:
            r *= plates[j]
    return r


def sum_multiply_to_plates(*arrays, to_plates=(), from_plates=None, ndim=0):
    """
    Compute the product of the arguments and sum to the target shape.
    """
    arrays = list(arrays)
    def get_plates(x):
        if ndim == 0:
            return x
        else:
            return x[:-ndim]

    plates_arrays = [get_plates(np.shape(array)) for array in arrays]
    product_plates = broadcasted_shape(*plates_arrays)

    if from_plates is None:
        from_plates = product_plates
        r = 1
    else:
        r = broadcasting_multiplier(from_plates, product_plates, to_plates)

    for ind in range(len(arrays)):
        plates_others = plates_arrays[:ind] + plates_arrays[(ind+1):]
        plates_without = broadcasted_shape(to_plates, *plates_others)
        ax = axes_to_collapse(plates_arrays[ind], #get_plates(np.shape(arrays[ind])),
                              plates_without)
        if ax:
            ax = tuple([a-ndim for a in ax])
            arrays[ind] = np.sum(arrays[ind], axis=ax, keepdims=True)

    plates_arrays = [get_plates(np.shape(array)) for array in arrays]
    product_plates = broadcasted_shape(*plates_arrays)

    ax = axes_to_collapse(product_plates, to_plates)
    if ax:
        ax = tuple([a-ndim for a in ax])
        y = sum_multiply(*arrays, axis=ax, keepdims=True)
    else:
        y = functools.reduce(np.multiply, arrays)
    y = squeeze_to_dim(y, len(to_plates) + ndim)
    return r * y


def multiply(*arrays):
    return functools.reduce(np.multiply, arrays, 1)


def sum_multiply(*args, axis=None, sumaxis=True, keepdims=False):

    # Computes sum(arg[0]*arg[1]*arg[2]*..., axis=axes_to_sum) without
    # explicitly computing the intermediate product

    if len(args) == 0:
        raise ValueError("You must give at least one input array")

    # Dimensionality of the result
    max_dim = 0
    for k in range(len(args)):
        max_dim = max(max_dim, np.ndim(args[k]))

    if sumaxis:
        if axis is None:
            # Sum all axes
            axes = []
        else:
            if np.isscalar(axis):
                axis = [axis]
            axes = [i
                    for i in range(max_dim)
                    if i not in axis and (-max_dim+i) not in axis]
    else:
        if axis is None:
            # Keep all axes
            axes = list(range(max_dim))
        else:
            # Find axes that are kept
            if np.isscalar(axis):
                axes = [axis]
            axes = [i if i >= 0
                    else i+max_dim
                    for i in axis]
            axes = sorted(axes)

    if len(axes) > 0 and (min(axes) < 0 or max(axes) >= max_dim):
        raise ValueError("Axis index out of bounds")

    # Form a list of pairs: the array in the product and its axes
    pairs = list()
    for i in range(len(args)):
        a = args[i]
        a_dim = np.ndim(a)
        pairs.append(a)
        pairs.append(range(max_dim-a_dim, max_dim))

    # Output axes are those which are not summed
    pairs.append(axes)

    # Compute the sum-product
    try:
        # Set optimize=False to work around a einsum broadcasting bug in NumPy 1.14.0:
        # https://github.com/numpy/numpy/issues/10343
        # Perhaps it'll be fixed in 1.14.1?
        y = np.einsum(*pairs, optimize=False)
    except ValueError as err:
        if str(err) == ("If 'op_axes' or 'itershape' is not NULL in "
                        "theiterator constructor, 'oa_ndim' must be greater "
                        "than zero"):
            # TODO/FIXME: Handle a bug in NumPy. If all arguments to einsum are
            # scalars, it raises an error. For scalars we can just use multiply
            # and forget about summing. Hopefully, in the future, einsum handles
            # scalars properly and this try-except becomes unnecessary.
            y = functools.reduce(np.multiply, args)
        else:
            raise err

    # Restore summed axes as singleton axes
    if keepdims:
        d = 0
        s = ()
        for k in range(max_dim):
            if k in axes:
                # Axis not summed
                s = s + (np.shape(y)[d],)
                d += 1
            else:
                # Axis was summed
                s = s + (1,)
        y = np.reshape(y, s)

    return y

def sum_product(*args, axes_to_keep=None, axes_to_sum=None, keepdims=False):
    if axes_to_keep is not None:
        return sum_multiply(*args,
                            axis=axes_to_keep,
                            sumaxis=False,
                            keepdims=keepdims)
    else:
        return sum_multiply(*args,
                            axis=axes_to_sum,
                            sumaxis=True,
                            keepdims=keepdims)

def moveaxis(A, axis_from, axis_to):
    """
    Move the axis `axis_from` to position `axis_to`.
    """
    if ((axis_from < 0 and abs(axis_from) > np.ndim(A)) or
        (axis_from >= 0 and axis_from >= np.ndim(A)) or
        (axis_to < 0 and abs(axis_to) > np.ndim(A)) or
        (axis_to >= 0  and axis_to >= np.ndim(A))):

        raise ValueError("Can't move axis %d to position %d. Axis index out of "
                         "bounds for array with shape %s"
                         % (axis_from,
                            axis_to,
                            np.shape(A)))

    axes = np.arange(np.ndim(A))
    axes[axis_from:axis_to] += 1
    axes[axis_from:axis_to:-1] -= 1
    axes[axis_to] = axis_from
    return np.transpose(A, axes=axes)


def safe_indices(inds, shape):
    """
    Makes sure that indices are valid for given shape.

    The shorter shape determines the length.

    For instance,

    .. testsetup::

       from bayespy.utils.misc import safe_indices

    >>> safe_indices( (3, 4, 5), (1, 6) )
    (0, 5)
    """
    m = min(len(inds), len(shape))

    if m == 0:
        return ()

    inds = inds[-m:]
    maxinds = np.array(shape[-m:]) - 1

    return tuple(np.fmin(inds, maxinds))


def broadcasted_shape(*shapes):
    """
    Computes the resulting broadcasted shape for a given set of shapes.

    Uses the broadcasting rules of NumPy.  Raises an exception if the shapes do
    not broadcast.
    """
    dim = 0
    for a in shapes:
        dim = max(dim, len(a))
    S = ()
    for i in range(-dim,0):
        s = 1
        for a in shapes:
            if -i <= len(a):
                if s == 1:
                    s = a[i]
                elif a[i] != 1 and a[i] != s:
                    raise ValueError("Shapes %s do not broadcast" % (shapes,))
        S = S + (s,)
    return S

def broadcasted_shape_from_arrays(*arrays):
    """
    Computes the resulting broadcasted shape for a given set of arrays.

    Raises an exception if the shapes do not broadcast.
    """

    shapes = [np.shape(array) for array in arrays]
    return broadcasted_shape(*shapes)


def is_shape_subset(sub_shape, full_shape):
    """
    """
    if len(sub_shape) > len(full_shape):
        return False
    for i in range(len(sub_shape)):
        ind = -1 - i
        if sub_shape[ind] != 1 and sub_shape[ind] != full_shape[ind]:
            return False
    return True


def add_axes(X, num=1, axis=0):
    for i in range(num):
        X = np.expand_dims(X, axis=axis)
    return X
    shape = np.shape(X)[:axis] + num*(1,) + np.shape(X)[axis:]
    return np.reshape(X, shape)


def add_leading_axes(x, n):
    return add_axes(x, axis=0, num=n)


def add_trailing_axes(x, n):
    return add_axes(x, axis=-1, num=n)


def nested_iterator(max_inds):
    s = [range(i) for i in max_inds]
    return itertools.product(*s)

def first(L):
    """
    """
    for (n,l) in enumerate(L):
        if l:
            return n
    return None

def squeeze(X):
    """
    Remove leading axes that have unit length.

    For instance, a shape (1,1,4,1,3) will be reshaped to (4,1,3).
    """
    shape = np.array(np.shape(X))
    inds = np.nonzero(shape != 1)[0]
    if len(inds) == 0:
        shape = ()
    else:
        shape = shape[inds[0]:]
    return np.reshape(X, shape)


def squeeze_to_dim(X, dim):
    s = tuple(range(np.ndim(X)-dim))
    return np.squeeze(X, axis=s)


def axes_to_collapse(shape_x, shape_to):
    # Solves which axes of shape shape_x need to be collapsed in order
    # to get the shape shape_to
    s = ()
    for j in range(-len(shape_x), 0):
        if shape_x[j] != 1:
            if -j > len(shape_to) or shape_to[j] == 1:
                s += (j,)
            elif shape_to[j] != shape_x[j]:
                print('Shape from: ' + str(shape_x))
                print('Shape to: ' + str(shape_to))
                raise Exception('Incompatible shape to squeeze')
    return tuple(s)

def sum_to_shape(X, s):
    """
    Sum axes of the array such that the resulting shape is as given.

    Thus, the shape of the result will be s or an error is raised.
    """
    # First, sum and remove axes that are not in s
    if np.ndim(X) > len(s):
        axes = tuple(range(-np.ndim(X), -len(s)))
    else:
        axes = ()
    Y = np.sum(X, axis=axes)

    # Second, sum axes that are 1 in s but keep the axes
    axes = ()
    for i in range(-np.ndim(Y), 0):
        if s[i] == 1:
            if np.shape(Y)[i] > 1:
                axes = axes + (i,)
        else:
            if np.shape(Y)[i] != s[i]:
                raise ValueError("Shape %s can't be summed to shape %s" %
                                 (np.shape(X), s))
    Y = np.sum(Y, axis=axes, keepdims=True)

    return Y

def repeat_to_shape(A, s):
    # Current shape
    t = np.shape(A)
    if len(t) > len(s):
        raise Exception("Can't repeat to a smaller shape")
    # Add extra axis
    t = tuple([1]*(len(s)-len(t))) + t
    A = np.reshape(A,t)
    # Repeat
    for i in reversed(range(len(s))):
        if s[i] != t[i]:
            if t[i] != 1:
                raise Exception("Can't repeat non-singular dimensions")
            else:
                A = np.repeat(A, s[i], axis=i)
    return A

def multidigamma(a, d):
    """
    Returns the derivative of the log of multivariate gamma.
    """
    return np.sum(special.digamma(a[...,None] - 0.5*np.arange(d)),
                  axis=-1)

m_digamma = multidigamma


def diagonal(A):
    return np.diagonal(A, axis1=-2, axis2=-1)


def make_diag(X, ndim=1, ndim_from=0):
    """
    Create a diagonal array given the diagonal elements.

    The diagonal array can be multi-dimensional. By default, the last axis is
    transformed to two axes (diagonal matrix) but this can be changed using ndim
    keyword. For instance, an array with shape (K,L,M,N) can be transformed to a
    set of diagonal 4-D tensors with shape (K,L,M,N,M,N) by giving ndim=2. If
    ndim=3, the result has shape (K,L,M,N,L,M,N), and so on.

    Diagonality means that for the resulting array Y holds:
    Y[...,i_1,i_2,..,i_ndim,j_1,j_2,..,j_ndim] is zero if i_n!=j_n for any n.
    """
    if ndim < 0:
        raise ValueError("Parameter ndim must be non-negative integer")

    if ndim_from < 0:
        raise ValueError("Parameter ndim_to must be non-negative integer")

    if ndim_from > ndim:
        raise ValueError("Parameter ndim_to must not be greater than ndim")

    if ndim == 0:
        return X

    if np.ndim(X) < 2 * ndim_from:
        raise ValueError("The array does not have enough axes")

    if ndim_from > 0:
        if np.shape(X)[-ndim_from:] != np.shape(X)[-2*ndim_from:-ndim_from]:
            raise ValueError("The array X is not square")

    if ndim == ndim_from:
        return X

    X = atleast_nd(X, ndim+ndim_from)

    if ndim > 0:
        if ndim_from > 0:
            I = identity(*(np.shape(X)[-(ndim_from+ndim):-ndim_from]))
        else:
            I = identity(*(np.shape(X)[-ndim:]))
        X = add_axes(X, axis=np.ndim(X)-ndim_from, num=ndim-ndim_from)
        X = I * X
    return X


def get_diag(X, ndim=1, ndim_to=0):
    """
    Get the diagonal of an array.

    If ndim>1, take the diagonal of the last 2*ndim axes.
    """
    if ndim < 0:
        raise ValueError("Parameter ndim must be non-negative integer")

    if ndim_to < 0:
        raise ValueError("Parameter ndim_to must be non-negative integer")

    if ndim_to > ndim:
        raise ValueError("Parameter ndim_to must not be greater than ndim")

    if ndim == 0:
        return X

    if np.ndim(X) < 2*ndim:
        raise ValueError("The array does not have enough axes")

    if np.shape(X)[-ndim:] != np.shape(X)[-2*ndim:-ndim]:
        raise ValueError("The array X is not square")

    if ndim == ndim_to:
        return X

    n_plate_axes = np.ndim(X) - 2 * ndim
    n_diag_axes = ndim - ndim_to

    axes = tuple(range(0, np.ndim(X) - ndim + ndim_to))

    lengths = [0, n_plate_axes, n_diag_axes, ndim_to, ndim_to]
    cutpoints = list(np.cumsum(lengths))

    axes_plates = axes[cutpoints[0]:cutpoints[1]]
    axes_diag= axes[cutpoints[1]:cutpoints[2]]
    axes_dims1 = axes[cutpoints[2]:cutpoints[3]]
    axes_dims2 = axes[cutpoints[3]:cutpoints[4]]

    axes_input = axes_plates + axes_diag + axes_dims1 + axes_diag + axes_dims2
    axes_output = axes_plates + axes_diag + axes_dims1 + axes_dims2

    return np.einsum(X, axes_input, axes_output)


def diag(X, ndim=1):
    """
    Create a diagonal array given the diagonal elements.

    The diagonal array can be multi-dimensional. By default, the last axis is
    transformed to two axes (diagonal matrix) but this can be changed using ndim
    keyword. For instance, an array with shape (K,L,M,N) can be transformed to a
    set of diagonal 4-D tensors with shape (K,L,M,N,M,N) by giving ndim=2. If
    ndim=3, the result has shape (K,L,M,N,L,M,N), and so on.

    Diagonality means that for the resulting array Y holds:
    Y[...,i_1,i_2,..,i_ndim,j_1,j_2,..,j_ndim] is zero if i_n!=j_n for any n.
    """
    X = atleast_nd(X, ndim)
    if ndim > 0:
        I = identity(*(np.shape(X)[-ndim:]))
        X = add_axes(X, axis=np.ndim(X), num=ndim)
        X = I * X
    return X

def m_dot(A,b):
    # Compute matrix-vector product over the last two axes of A and
    # the last axes of b.  Other axes are broadcasted. If A has shape
    # (..., M, N) and b has shape (..., N), then the result has shape
    # (..., M)

    #b = reshape(b, shape(b)[:-1] + (1,) + shape(b)[-1:])
    #return np.dot(A, b)
    return np.einsum('...ik,...k->...i', A, b)
    # TODO: Use einsum!!
    #return np.sum(A*b[...,np.newaxis,:], axis=(-1,))


def block_banded(D, B):
    """
    Construct a symmetric block-banded matrix.

    `D` contains square diagonal blocks.
    `B` contains super-diagonal blocks.

    The resulting matrix is:

    D[0],   B[0],   0,    0,    ..., 0,        0,        0
    B[0].T, D[1],   B[1], 0,    ..., 0,        0,        0
    0,      B[1].T, D[2], B[2], ..., ...,      ...,      ...
    ...     ...     ...   ...   ..., B[N-2].T, D[N-1],   B[N-1]
    0,      0,      0,    0,    ..., 0,        B[N-1].T, D[N]

    """

    D = [np.atleast_2d(d) for d in D]
    B = [np.atleast_2d(b) for b in B]

    # Number of diagonal blocks
    N = len(D)

    if len(B) != N-1:
        raise ValueError("The number of super-diagonal blocks must contain "
                         "exactly one block less than the number of diagonal "
                         "blocks")

    # Compute the size of the full matrix
    M = 0
    for i in range(N):
        if np.ndim(D[i]) != 2:
            raise ValueError("Blocks must be 2 dimensional arrays")
        d = np.shape(D[i])
        if d[0] != d[1]:
            raise ValueError("Diagonal blocks must be square")
        M += d[0]

    for i in range(N-1):
        if np.ndim(B[i]) != 2:
            raise ValueError("Blocks must be 2 dimensional arrays")
        b = np.shape(B[i])
        if b[0] != np.shape(D[i])[1] or b[1] != np.shape(D[i+1])[0]:
            raise ValueError("Shapes of the super-diagonal blocks do not match "
                             "the shapes of the diagonal blocks")

    A = np.zeros((M,M))
    k = 0

    for i in range(N-1):
        (d0, d1) = np.shape(B[i])
        # Diagonal block
        A[k:k+d0, k:k+d0] = D[i]
        # Super-diagonal block
        A[k:k+d0, k+d0:k+d0+d1] = B[i]
        # Sub-diagonal block
        A[k+d0:k+d0+d1, k:k+d0] = B[i].T

        k += d0
    A[k:,k:] = D[-1]

    return A


def dist_haversine(c1, c2, radius=6372795):

    # Convert coordinates to radians
    lat1 = np.atleast_1d(c1[0])[...,:,None] * np.pi / 180
    lon1 = np.atleast_1d(c1[1])[...,:,None] * np.pi / 180
    lat2 = np.atleast_1d(c2[0])[...,None,:] * np.pi / 180
    lon2 = np.atleast_1d(c2[1])[...,None,:] * np.pi / 180

    dlat = lat2 - lat1
    dlon = lon2 - lon1

    A = np.sin(dlat/2)**2 + np.cos(lat1)*np.cos(lat2)*(np.sin(dlon/2)**2)
    C = 2 * np.arctan2(np.sqrt(A), np.sqrt(1-A))

    return radius * C

def logsumexp(X, axis=None, keepdims=False):
    """
    Compute log(sum(exp(X)) in a numerically stable way
    """

    X = np.asanyarray(X)

    maxX = np.amax(X, axis=axis, keepdims=True)

    if np.ndim(maxX) > 0:
        maxX[~np.isfinite(maxX)] = 0
    elif not np.isfinite(maxX):
        maxX = 0

    X = X - maxX

    if not keepdims:
        maxX = np.squeeze(maxX, axis=axis)

    return np.log(np.sum(np.exp(X), axis=axis, keepdims=keepdims)) + maxX


def normalized_exp(phi):
    """Compute exp(phi) so that exp(phi) sums to one.

    This is useful for computing probabilities from log evidence.
    """
    logsum_p = logsumexp(phi, axis=-1, keepdims=True)
    logp = phi - logsum_p
    p = np.exp(logp)
    # Because of small numerical inaccuracy, normalize the probabilities
    # again for more accurate results
    return (
        p / np.sum(p, axis=-1, keepdims=True),
        logsum_p
    )


def invpsi(x):
    r"""
    Inverse digamma (psi) function.

    The digamma function is the derivative of the log gamma function.
    This calculates the value Y > 0 for a value X such that digamma(Y) = X.

    For the new version, see Appendix C:
    http://research.microsoft.com/en-us/um/people/minka/papers/dirichlet/minka-dirichlet.pdf

    For the previous implementation, see:
    http://www4.ncsu.edu/~pfackler/

    Are there speed/accuracy differences between the methods?
    """
    x = np.asanyarray(x)

    y = np.where(
        x >= -2.22,
        np.exp(x) + 0.5,
        -1/(x - special.psi(1))
    )
    for i in range(5):
        y = y - (special.psi(y) - x) / special.polygamma(1, y)

    return y

    # # Previous implementation. Is it worse? Is there difference?
    # L = 1.0
    # y = np.exp(x)
    # while (L > 1e-10):
    #     y += L*np.sign(x-special.psi(y))
    #     L /= 2
    # # Ad hoc by Jaakko
    # y = np.where(x < -100, -1 / x, y)
    # return y


def invgamma(x):
    r"""
    Inverse gamma function.

    See: http://mathoverflow.net/a/28977
    """
    k = 1.461632
    c = 0.036534
    L = np.log((x+c)/np.sqrt(2*np.pi))
    W = special.lambertw(L/np.exp(1))
    return L/W + 0.5


def mean(X, axis=None, keepdims=False):
    """
    Compute the mean, ignoring NaNs.
    """
    if np.ndim(X) == 0:
        if axis is not None:
            raise ValueError("Axis out of bounds")
        return X
    X = np.asanyarray(X)
    nans = np.isnan(X)
    X = X.copy()
    X[nans] = 0
    m = (np.sum(X, axis=axis, keepdims=keepdims) /
         np.sum(~nans, axis=axis, keepdims=keepdims))
    return m


def gradient(f, x, epsilon=1e-6):
    return optimize.approx_fprime(x, f, epsilon)


def broadcast(*arrays, ignore_axis=None):
    """
    Explicitly broadcast arrays to same shapes.

    It is possible ignore some axes so that the arrays are not broadcasted
    along those axes.
    """

    shapes = [np.shape(array) for array in arrays]

    if ignore_axis is None:
        full_shape = broadcasted_shape(*shapes)

    else:
        try:
            ignore_axis = tuple(ignore_axis)
        except TypeError:
            ignore_axis = (ignore_axis,)

        if len(ignore_axis) != len(set(ignore_axis)):
            raise ValueError("Indices must be unique")

        if any(i >= 0 for i in ignore_axis):
            raise ValueError("Indices must be negative")

        # Put lengths of ignored axes to 1
        cut_shapes = [
            tuple(
                1
                if i in ignore_axis else
                shape[i]
                for i in range(-len(shape), 0)
            )
            for shape in shapes
        ]

        full_shape = broadcasted_shape(*cut_shapes)

    return [np.ones(full_shape) * array for array in arrays]


def block_diag(*arrays):
    """
    Form a block diagonal array from the given arrays.

    Compared to SciPy's block_diag, this utilizes broadcasting and accepts more
    than dimensions in the input arrays.

    """

    arrays = broadcast(*arrays, ignore_axis=(-1, -2))

    plates = np.shape(arrays[0])[:-2]

    M = sum(np.shape(array)[-2] for array in arrays)
    N = sum(np.shape(array)[-1] for array in arrays)

    Y = np.zeros(plates + (M, N))

    i_start = 0
    j_start = 0
    for array in arrays:
        i_end = i_start + np.shape(array)[-2]
        j_end = j_start + np.shape(array)[-1]
        Y[...,i_start:i_end,j_start:j_end] = array
        i_start = i_end
        j_start = j_end

    return Y


def concatenate(*arrays, axis=-1):
    """
    Concatenate arrays along a given axis.

    Compared to NumPy's concatenate, this utilizes broadcasting.
    """

    # numpy.concatenate doesn't do broadcasting, so we need to do it explicitly
    return np.concatenate(
        broadcast(*arrays, ignore_axis=axis),
        axis=axis
    )