1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
Mixture distribution
--------------------
.. math::
\mathbf{x}
&\sim
\mathrm{Mix}_{\mathcal{D}}
\left(
\lambda,
\left\{ \mathbf{\Theta}^{(n)}_1, \ldots, \mathbf{\Theta}^{(n)}_K \right\}^N_{n=1}
\right)
.. math::
\lambda \in \{1, \ldots, N\},
\quad \mathcal{D} \text{ is an exp.fam. distribution},
\quad \mathbf{\Theta}^{(n)}_k \text{ are parameters of } \mathcal{D}
.. math::
\log\mathrm{Mix}_{\mathcal{D}}
\left(
\mathbf{x}
\left| \lambda,
\left\{ \mathbf{\Theta}^{(n)}_1, \ldots, \mathbf{\Theta}^{(n)}_K \right\}^N_{n=1}
\right.
\right)
&=
\sum^N_{n=1} [\lambda=n]
\mathbf{u}_{\mathcal{D}}(\mathbf{x})^{\mathrm{T}}
\boldsymbol{\phi}_{\mathcal{D}}
\left(
\mathbf{\Theta}^{(n)}_1, \ldots, \mathbf{\Theta}^{(n)}_K
\right)
\\
& \quad +
\sum^N_{n=1} [\lambda=n]
g_{\mathcal{D}}
\left(
\mathbf{\Theta}^{(n)}_1, \ldots, \mathbf{\Theta}^{(n)}_K
\right)
+ f_{\mathcal{D}} (\mathbf{x})
.. math::
\mathbf{u} (\mathbf{x})
&=
\mathbf{u}_{\mathcal{D}} (\mathbf{x})
\\
\boldsymbol{\phi}
\left(
\lambda,
\left\{ \mathbf{\Theta}^{(n)}_1, \ldots, \mathbf{\Theta}^{(n)}_K \right\}^N_{n=1}
\right)
&=
\sum^N_{n=1} [\lambda=n]
\boldsymbol{\phi}_{\mathcal{D}}
\left(
\mathbf{\Theta}^{(n)}_1, \ldots, \mathbf{\Theta}^{(n)}_K
\right)
%
\\
%
\boldsymbol{\phi}_{\lambda}
\left(
\mathbf{x},
\left\{ \mathbf{\Theta}^{(n)}_1, \ldots, \mathbf{\Theta}^{(n)}_K \right\}^N_{n=1}
\right)
&=
\left[\begin{matrix}
\mathbf{u}_{\mathcal{D}} (\mathbf{x})^{\mathrm{T}}
\boldsymbol{\phi}_{\mathcal{D}}
\left(
\mathbf{\Theta}^{(1)}_1, \ldots, \mathbf{\Theta}^{(1)}_K
\right)
+ g_{\mathcal{D}}
\left(
\mathbf{\Theta}^{(1)}_1, \ldots, \mathbf{\Theta}^{(1)}_K
\right)
\\
\vdots
\\
\mathbf{u}_{\mathcal{D}} (\mathbf{x})^{\mathrm{T}}
\boldsymbol{\phi}_{\mathcal{D}}
\left(
\mathbf{\Theta}^{(N)}_1, \ldots, \mathbf{\Theta}^{(N)}_K
\right)
+ g_{\mathcal{D}}
\left(
\mathbf{\Theta}^{(N)}_1, \ldots, \mathbf{\Theta}^{(N)}_K
\right)
\end{matrix}\right]
%
\\
%
\boldsymbol{\phi}_{\mathbf{\Theta}^{(m)}_l}
\left(
\mathbf{x},
\lambda,
\left\{ \mathbf{\Theta}^{(n)}_1, \ldots, \mathbf{\Theta}^{(n)}_K \right\}^N_{n=1}
\setminus \left\{ \mathbf{\Theta}^{(m)}_l \right\}
\right)
&=
[\lambda=m] \boldsymbol{\phi}_{\mathcal{D}\rightarrow\mathbf{\Theta}_l}
\left(
\mathbf{x},
\left\{ \mathbf{\Theta}^{(m)}_k \right\}_{k\neq l}
\right)
%
\\
%
g
\left(
\lambda,
\left\{ \mathbf{\Theta}^{(n)}_1, \ldots, \mathbf{\Theta}^{(n)}_K \right\}^N_{n=1}
\right)
&=
\sum^N_{n=1} [\lambda=n]
g_{\mathcal{D}}
\left(
\mathbf{\Theta}^{(n)}_1, \ldots, \mathbf{\Theta}^{(n)}_K
\right)
\\
g (\boldsymbol{\phi})
&=
g_{\mathcal{D}} (\boldsymbol{\phi})
\\
f(\mathbf{x})
&=
f_{\mathcal{D}} (\mathbf{x})
\\
\overline{\mathbf{u}} (\boldsymbol{\phi})
&=
\overline{\mathbf{u}}_{\mathcal{D}} (\boldsymbol{\phi})
|