1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
..
Copyright (C) 2014 Jaakko Luttinen
This file is licensed under the MIT License. See LICENSE for a text of the
license.
.. testsetup::
import numpy
numpy.random.seed(1)
Hidden Markov model
===================
In this example, we will demonstrate the use of hidden Markov model in the case
of known and unknown parameters. We will also use two different emission
distributions to demonstrate the flexibility of the model construction.
Known parameters
----------------
This example follows the one presented in `Wikipedia
<http://en.wikipedia.org/wiki/Hidden_Markov_model#A_concrete_example>`__.
Model
+++++
Each day, the state of the weather is either 'rainy' or 'sunny'. The weather
follows a first-order discrete Markov process. It has the following initial
state probabilities
>>> a0 = [0.6, 0.4] # p(rainy)=0.6, p(sunny)=0.4
and state transition probabilities:
>>> A = [[0.7, 0.3], # p(rainy->rainy)=0.7, p(rainy->sunny)=0.3
... [0.4, 0.6]] # p(sunny->rainy)=0.4, p(sunny->sunny)=0.6
We will be observing one hundred samples:
>>> N = 100
The discrete first-order Markov chain is constructed as:
>>> from bayespy.nodes import CategoricalMarkovChain
>>> Z = CategoricalMarkovChain(a0, A, states=N)
However, instead of observing this process directly, we observe whether Bob is
'walking', 'shopping' or 'cleaning'. The probability of each activity depends on
the current weather as follows:
>>> P = [[0.1, 0.4, 0.5],
... [0.6, 0.3, 0.1]]
where the first row contains activity probabilities on a rainy weather and the
second row contains activity probabilities on a sunny weather. Using these
emission probabilities, the observed process is constructed as:
>>> from bayespy.nodes import Categorical, Mixture
>>> Y = Mixture(Z, Categorical, P)
Data
++++
In order to test our method, we'll generate artificial data from the model
itself. First, draw realization of the weather process:
>>> weather = Z.random()
Then, using this weather, draw realizations of the activities:
>>> activity = Mixture(weather, Categorical, P).random()
Inference
+++++++++
Now, using this data, we set our variable :math:`Y` to be observed:
>>> Y.observe(activity)
In order to run inference, we construct variational Bayesian inference engine:
>>> from bayespy.inference import VB
>>> Q = VB(Y, Z)
Note that we need to give all random variables to ``VB``. In this case, the only
random variables were ``Y`` and ``Z``. Next we run the inference, that is,
compute our posterior distribution:
>>> Q.update()
Iteration 1: loglike=-1.095883e+02 (... seconds)
In this case, because there is only one unobserved random variable, we
recover the exact posterior distribution and there is no need to iterate
more than one step.
Results
+++++++
.. currentmodule:: bayespy.plot
One way to plot a 2-class categorical timeseries is to use the basic
:func:`plot` function:
>>> import bayespy.plot as bpplt
>>> bpplt.plot(Z)
>>> bpplt.plot(1-weather, color='r', marker='x')
.. plot::
import numpy
numpy.random.seed(1)
from bayespy.nodes import CategoricalMarkovChain
a0 = [0.6, 0.4] # p(rainy)=0.6, p(sunny)=0.4
A = [[0.7, 0.3], # p(rainy->rainy)=0.7, p(rainy->sunny)=0.3
[0.4, 0.6]] # p(sunny->rainy)=0.4, p(sunny->sunny)=0.6
N = 100
Z = CategoricalMarkovChain(a0, A, states=N)
from bayespy.nodes import Categorical, Mixture
P = [[0.1, 0.4, 0.5],
[0.6, 0.3, 0.1]]
Y = Mixture(Z, Categorical, P)
weather = Z.random()
activity = Mixture(weather, Categorical, P).random()
Y.observe(activity)
from bayespy.inference import VB
Q = VB(Y, Z)
Q.update()
import bayespy.plot as bpplt
bpplt.plot(Z)
bpplt.plot(1-weather, color='r', marker='x')
bpplt.pyplot.show()
The black line shows the posterior probability of rain and the red line and
crosses show the true state. Clearly, the method is not able to infer the
weather very accurately in this case because the activies do not give that much
information about the weather.
Unknown parameters
------------------
In this example, we consider unknown parameters for the Markov process and
different emission distribution.
Data
++++
We generate data from three 2-dimensional Gaussian distributions with different
mean vectors and common standard deviation:
>>> import numpy as np
>>> mu = np.array([ [0,0], [3,4], [6,0] ])
>>> std = 2.0
Thus, the number of clusters is three:
>>> K = 3
And the number of samples is 200:
>>> N = 200
Each initial state is equally probable:
>>> p0 = np.ones(K) / K
State transition matrix is such that with probability 0.9 the process stays in
the same state. The probability to move one of the other two states is 0.05 for
both of those states.
>>> q = 0.9
>>> r = (1-q) / (K-1)
>>> P = q*np.identity(K) + r*(np.ones((3,3))-np.identity(3))
Simulate the data:
>>> y = np.zeros((N,2))
>>> z = np.zeros(N)
>>> state = np.random.choice(K, p=p0)
>>> for n in range(N):
... z[n] = state
... y[n,:] = std*np.random.randn(2) + mu[state]
... state = np.random.choice(K, p=P[state])
Then, let us visualize the data:
>>> bpplt.pyplot.figure()
<matplotlib.figure.Figure object at 0x...>
>>> bpplt.pyplot.axis('equal')
(...)
>>> colors = [ [[1,0,0], [0,1,0], [0,0,1]][int(state)] for state in z ]
>>> bpplt.pyplot.plot(y[:,0], y[:,1], 'k-', zorder=-10)
[<matplotlib.lines.Line2D object at 0x...>]
>>> bpplt.pyplot.scatter(y[:,0], y[:,1], c=colors, s=40)
<matplotlib.collections.PathCollection object at 0x...>
.. plot::
import numpy
numpy.random.seed(1)
from bayespy.nodes import CategoricalMarkovChain
a0 = [0.6, 0.4] # p(rainy)=0.6, p(sunny)=0.4
A = [[0.7, 0.3], # p(rainy->rainy)=0.7, p(rainy->sunny)=0.3
[0.4, 0.6]] # p(sunny->rainy)=0.4, p(sunny->sunny)=0.6
N = 100
Z = CategoricalMarkovChain(a0, A, states=N)
from bayespy.nodes import Categorical, Mixture
P = [[0.1, 0.4, 0.5],
[0.6, 0.3, 0.1]]
Y = Mixture(Z, Categorical, P)
weather = Z.random()
from bayespy.inference import VB
import bayespy.plot as bpplt
import numpy as np
mu = np.array([ [0,0], [3,4], [6,0] ])
std = 2.0
K = 3
N = 200
p0 = np.ones(K) / K
q = 0.9
r = (1-q)/(K-1)
P = q*np.identity(K) + r*(np.ones((3,3))-np.identity(3))
y = np.zeros((N,2))
z = np.zeros(N)
state = np.random.choice(K, p=p0)
for n in range(N):
z[n] = state
y[n,:] = std*np.random.randn(2) + mu[state]
state = np.random.choice(K, p=P[state])
bpplt.pyplot.figure()
bpplt.pyplot.axis('equal')
colors = [ [[1,0,0], [0,1,0], [0,0,1]][int(state)] for state in z ]
bpplt.pyplot.plot(y[:,0], y[:,1], 'k-', zorder=-10)
bpplt.pyplot.scatter(y[:,0], y[:,1], c=colors, s=40)
bpplt.pyplot.show()
Consecutive states are connected by a solid black line and the dot color shows
the true class.
Model
+++++
Now, assume that we do not know the parameters of the process (initial state
probability and state transition probabilities). We give these parameters quite
non-informative priors, but it is possible to provide more informative priors if
such information is available:
>>> from bayespy.nodes import Dirichlet
>>> a0 = Dirichlet(1e-3*np.ones(K))
>>> A = Dirichlet(1e-3*np.ones((K,K)))
The discrete Markov chain is constructed as:
>>> Z = CategoricalMarkovChain(a0, A, states=N)
Now, instead of using categorical emission distribution as before, we'll use
Gaussian distribution. For simplicity, we use the true parameters of the
Gaussian distributions instead of giving priors and estimating them. The known
standard deviation can be converted to a precision matrix as:
>>> Lambda = std**(-2) * np.identity(2)
Thus, the observed process is a Gaussian mixture with cluster assignments from
the hidden Markov process ``Z``:
>>> from bayespy.nodes import Gaussian
>>> Y = Mixture(Z, Gaussian, mu, Lambda)
Note that ``Lambda`` does not have cluster plate axis because it is shared
between the clusters.
Inference
+++++++++
Let us use the simulated data:
>>> Y.observe(y)
Because ``VB`` takes all the random variables, we need to provide ``A`` and
``a0`` also:
>>> Q = VB(Y, Z, A, a0)
Then, run VB iteration until convergence:
>>> Q.update(repeat=1000)
Iteration 1: loglike=-9.963054e+02 (... seconds)
...
Iteration 8: loglike=-9.235053e+02 (... seconds)
Converged at iteration 8.
Results
+++++++
Plot the classification of the data similarly as the data:
>>> bpplt.pyplot.figure()
<matplotlib.figure.Figure object at 0x...>
>>> bpplt.pyplot.axis('equal')
(...)
>>> colors = Y.parents[0].get_moments()[0]
>>> bpplt.pyplot.plot(y[:,0], y[:,1], 'k-', zorder=-10)
[<matplotlib.lines.Line2D object at 0x...>]
>>> bpplt.pyplot.scatter(y[:,0], y[:,1], c=colors, s=40)
<matplotlib.collections.PathCollection object at 0x...>
.. plot::
import numpy
numpy.random.seed(1)
from bayespy.nodes import CategoricalMarkovChain
a0 = [0.6, 0.4] # p(rainy)=0.6, p(sunny)=0.4
A = [[0.7, 0.3], # p(rainy->rainy)=0.7, p(rainy->sunny)=0.3
[0.4, 0.6]] # p(sunny->rainy)=0.4, p(sunny->sunny)=0.6
N = 100
Z = CategoricalMarkovChain(a0, A, states=N)
from bayespy.nodes import Categorical, Mixture
P = [[0.1, 0.4, 0.5],
[0.6, 0.3, 0.1]]
Y = Mixture(Z, Categorical, P)
weather = Z.random()
from bayespy.inference import VB
import bayespy.plot as bpplt
import numpy as np
mu = np.array([ [0,0], [3,4], [6,0] ])
std = 2.0
K = 3
N = 200
p0 = np.ones(K) / K
q = 0.9
r = (1-q)/(K-1)
P = q*np.identity(K) + r*(np.ones((3,3))-np.identity(3))
y = np.zeros((N,2))
z = np.zeros(N)
state = np.random.choice(K, p=p0)
for n in range(N):
z[n] = state
y[n,:] = std*np.random.randn(2) + mu[state]
state = np.random.choice(K, p=P[state])
from bayespy.nodes import Dirichlet
a0 = Dirichlet(1e-3*np.ones(K))
A = Dirichlet(1e-3*np.ones((K,K)))
Z = CategoricalMarkovChain(a0, A, states=N)
Lambda = std**(-2) * np.identity(2)
from bayespy.nodes import Gaussian
Y = Mixture(Z, Gaussian, mu, Lambda)
Y.observe(y)
Q = VB(Y, Z, A, a0)
Q.update(repeat=1000)
bpplt.pyplot.figure()
bpplt.pyplot.axis('equal')
colors = Y.parents[0].get_moments()[0]
bpplt.pyplot.plot(y[:,0], y[:,1], 'k-', zorder=-10)
bpplt.pyplot.scatter(y[:,0], y[:,1], c=colors, s=40)
bpplt.pyplot.show()
The data has been classified quite correctly. Even samples that are more in the
region of another cluster are classified correctly if the previous and next
sample provide enough evidence for the correct class. We can also plot the
state transition matrix:
>>> bpplt.hinton(A)
.. plot::
import numpy
numpy.random.seed(1)
from bayespy.nodes import CategoricalMarkovChain
a0 = [0.6, 0.4] # p(rainy)=0.6, p(sunny)=0.4
A = [[0.7, 0.3], # p(rainy->rainy)=0.7, p(rainy->sunny)=0.3
[0.4, 0.6]] # p(sunny->rainy)=0.4, p(sunny->sunny)=0.6
N = 100
Z = CategoricalMarkovChain(a0, A, states=N)
from bayespy.nodes import Categorical, Mixture
P = [[0.1, 0.4, 0.5],
[0.6, 0.3, 0.1]]
Y = Mixture(Z, Categorical, P)
weather = Z.random()
from bayespy.inference import VB
import bayespy.plot as bpplt
import numpy as np
mu = np.array([ [0,0], [3,4], [6,0] ])
std = 2.0
K = 3
N = 200
p0 = np.ones(K) / K
q = 0.9
r = (1-q)/(K-1)
P = q*np.identity(K) + r*(np.ones((3,3))-np.identity(3))
y = np.zeros((N,2))
z = np.zeros(N)
state = np.random.choice(K, p=p0)
for n in range(N):
z[n] = state
y[n,:] = std*np.random.randn(2) + mu[state]
state = np.random.choice(K, p=P[state])
from bayespy.nodes import Dirichlet
a0 = Dirichlet(1e-3*np.ones(K))
A = Dirichlet(1e-3*np.ones((K,K)))
Z = CategoricalMarkovChain(a0, A, states=N)
Lambda = std**(-2) * np.identity(2)
from bayespy.nodes import Gaussian
Y = Mixture(Z, Gaussian, mu, Lambda)
Y.observe(y)
Q = VB(Y, Z, A, a0)
Q.update(repeat=1000)
bpplt.hinton(A)
bpplt.pyplot.show()
Clearly, the learned state transition matrix is close to the true matrix. The
models described above could also be used for classification by providing the
known class assignments as observed data to ``Z`` and the unknown class
assignments as missing data.
|