1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
# Relations
The document can contain links to other documents in their fields.
*Only top-level fields are fully supported for now.*
The following field types are supported:
- `Link[...]`
- `Optional[Link[...]]`
- `List[Link[...]]`
- `Optional[List[Link[...]]]`
Also, backward links are supported:
- `BackLink[...]`
- `Optional[BackLink[...]]`
- `List[BackLink[...]]`
- `Optional[List[BackLink[...]]]`
Direct link to the document:
```python
from beanie import Document, Link
class Door(Document):
height: int = 2
width: int = 1
class House(Document):
name: str
door: Link[Door]
```
Optional direct link to the document:
```python
from typing import Optional
from beanie import Document, Link
class Door(Document):
height: int = 2
width: int = 1
class House(Document):
name: str
door: Optional[Link[Door]]
```
List of the links:
```python
from typing import List
from beanie import Document, Link
class Window(Document):
x: int = 10
y: int = 10
class House(Document):
name: str
door: Link[Door]
windows: List[Link[Window]]
```
Optional list of the links:
```python
from typing import List, Optional
from beanie import Document, Link
class Window(Document):
x: int = 10
y: int = 10
class Yard(Document):
v: int = 10
y: int = 10
class House(Document):
name: str
door: Link[Door]
windows: List[Link[Window]]
yards: Optional[List[Link[Yard]]]
```
Other link patterns are not supported at this moment. If you need something more specific for your use-case,
please open an issue on the GitHub page - <https://github.com/roman-right/beanie>
## Write
The following write methods support relations:
- `insert(...)`
- `replace(...)`
- `save(...)`
To apply a write method to the linked documents, you should pass the respective `link_rule` argument
```python
house.windows = [Window(x=100, y=100)]
house.name = "NEW NAME"
# The next call will insert a new window object and replace the house instance with updated data
await house.save(link_rule=WriteRules.WRITE)
# `insert` and `replace` methods will work the same way
```
Otherwise, Beanie can ignore internal links with the `link_rule` parameter `WriteRules.DO_NOTHING`
```python
house.door.height = 3
house.name = "NEW NAME"
# The next call will just replace the house instance with new data, but the linked door object will not be synced
await house.replace(link_rule=WriteRules.DO_NOTHING)
# `insert` and `save` methods will work the same way
```
## Fetch
### Prefetch
You can fetch linked documents on the find query step using the `fetch_links` parameter
```python
houses = await House.find(
House.name == "test",
fetch_links=True
).to_list()
```
Supported find methods:
- `find`
- `find_one`
- `get`
Beanie uses the single aggregation query under the hood to fetch all the linked documents.
This operation is very effective.
If a direct link is referred to a non-existent document,
after fetching it will remain the object of the `Link` class.
Fetching will ignore non-existent documents for the list of links fields.
#### Search by linked documents fields
If the `fetch_links` parameter is set to `True`, search by linked documents fields is available.
By field of the direct link:
```python
houses = await House.find(
House.door.height == 2,
fetch_links=True
).to_list()
```
By list of links:
```python
houses = await House.find(
House.windows.x > 10,
fetch_links=True
).to_list()
```
Search by `id` of the linked documents works using the following syntax:
```python
houses = await House.find(
House.door.id == PydanticObjectId("DOOR_ID_HERE")
).to_list()
```
It works the same way with `fetch_links` equal to `True` and `False` and for `find_many` and `find_one` methods.
#### Nested links
With Beanie you can set up nested links. Document can even link to itself. This can lead to infinite recursion. To prevent this, or to decrease the database load, you can limit the nesting depth during find operations.
```python
from beanie import Document, Link
from typing import Optional
class SelfLinkedSample(Document):
name: str
left: Optional[Link["SelfLinkedSample"]]
right: Optional[Link["SelfLinkedSample"]]
```
You can set up depth for all linked documents independently of the field:
```python
await SelfLinkedSample.find(
SelfLinkedSample.name == "test",
fetch_links=True,
nesting_depth=2
).to_list()
```
Or you can set up depth for a specific field:
```python
await SelfLinkedSample.find(
SelfLinkedSample.name == "test",
fetch_links=True,
nesting_depths_per_field={
"left": 1,
"right": 2
}
).to_list()
```
Also, you can set up the maximum nesting depth on the document definition level. You can read more about this [here](/tutorial/defining-a-document/#nested-documents-depth).
### On-demand fetch
If you don't use prefetching, linked documents will be presented as objects of the `Link` class.
You can fetch them manually afterwards.
To fetch all the linked documents, you can use the `fetch_all_links` method
```python
await house.fetch_all_links()
```
It will fetch all the linked documents and replace `Link` objects with them.
Otherwise, you can fetch a single field:
```python
await house.fetch_link(House.door)
```
This will fetch the Door object and put it into the `door` field of the `house` object.
## Delete
Delete method works the same way as write operations, but it uses other rules.
To delete all the links on the document deletion,
you should use the `DeleteRules.DELETE_LINKS` value for the `link_rule` parameter:
```python
await house.delete(link_rule=DeleteRules.DELETE_LINKS)
```
To keep linked documents, you can use the `DO_NOTHING` rule:
```python
await house.delete(link_rule=DeleteRules.DO_NOTHING)
```
## Back Links
To init the back link you should have a document with the direct or list of links to the current document.
```python
from typing import List
from beanie import Document, BackLink, Link
from pydantic import Field
class House(Document):
name: str
door: Link["Door"]
owners: List[Link["Person"]]
class Door(Document):
height: int = 2
width: int = 1
house: BackLink[House] = Field(json_schema_extra={"original_field": "door"})
class Person(Document):
name: str
house: List[BackLink[House]] = Field(json_schema_extra={"original_field": "owners"})
```
The `original_field` parameter is required for the back link field.
In Pydantic v2, it must be passed using the json_schema_extra argument in Field(...) to avoid deprecation warnings and ensure compatibility.
Back links support all the operations that normal links support, but are virtual. This means that when searching the database, you will need to include `fetch_links=True` (see [Finding documents](/tutorial/finding-documents).), or you will recieve an empty 'BackLink' virtual object. It is not possible to `fetch()` this virtual link after the initial search.
## Limitations
- Find operations with the `fetch_links` parameter can not be used in the chaning with `delete` and `update` methods.
|