1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
import pytest
from pydantic import Field
from pydantic.main import BaseModel
from pymongo.errors import OperationFailure
from beanie.odm.enums import SortDirection
from beanie.odm.utils.find import construct_lookup_queries
from tests.odm.models import DocumentWithTextIndexAndLink, Sample
async def test_aggregate(preset_documents):
q = Sample.aggregate(
[{"$group": {"_id": "$string", "total": {"$sum": "$integer"}}}]
)
assert q.get_aggregation_pipeline() == [
{"$group": {"_id": "$string", "total": {"$sum": "$integer"}}}
]
result = await q.to_list()
assert len(result) == 4
assert {"_id": "test_3", "total": 3} in result
assert {"_id": "test_1", "total": 3} in result
assert {"_id": "test_0", "total": 0} in result
assert {"_id": "test_2", "total": 6} in result
async def test_aggregate_with_filter(preset_documents):
q = Sample.find(Sample.increment >= 4).aggregate(
[{"$group": {"_id": "$string", "total": {"$sum": "$integer"}}}]
)
assert q.get_aggregation_pipeline() == [
{"$match": {"increment": {"$gte": 4}}},
{"$group": {"_id": "$string", "total": {"$sum": "$integer"}}},
]
result = await q.to_list()
assert len(result) == 3
assert {"_id": "test_1", "total": 2} in result
assert {"_id": "test_2", "total": 6} in result
assert {"_id": "test_3", "total": 3} in result
async def test_aggregate_with_sort_skip(preset_documents):
q = Sample.find(sort="_id", skip=2).aggregate(
[{"$group": {"_id": "$string", "total": {"$sum": "$integer"}}}]
)
assert q.get_aggregation_pipeline() == [
{"$group": {"_id": "$string", "total": {"$sum": "$integer"}}},
{"$sort": {"_id": SortDirection.ASCENDING}},
{"$skip": 2},
]
assert await q.to_list() == [
{"_id": "test_2", "total": 6},
{"_id": "test_3", "total": 3},
]
async def test_aggregate_with_sort_limit(preset_documents):
q = Sample.find(sort="_id", limit=2).aggregate(
[{"$group": {"_id": "$string", "total": {"$sum": "$integer"}}}]
)
assert q.get_aggregation_pipeline() == [
{"$group": {"_id": "$string", "total": {"$sum": "$integer"}}},
{"$sort": {"_id": SortDirection.ASCENDING}},
{"$limit": 2},
]
assert await q.to_list() == [
{"_id": "test_0", "total": 0},
{"_id": "test_1", "total": 3},
]
async def test_aggregate_with_projection_model(preset_documents):
class OutputItem(BaseModel):
id: str = Field(None, alias="_id")
total: int
ids = []
q = Sample.find(Sample.increment >= 4).aggregate(
[{"$group": {"_id": "$string", "total": {"$sum": "$integer"}}}],
projection_model=OutputItem,
)
assert q.get_aggregation_pipeline() == [
{"$match": {"increment": {"$gte": 4}}},
{"$group": {"_id": "$string", "total": {"$sum": "$integer"}}},
{"$project": {"_id": 1, "total": 1}},
]
async for i in q:
if i.id == "test_1":
assert i.total == 2
elif i.id == "test_2":
assert i.total == 6
elif i.id == "test_3":
assert i.total == 3
else:
raise KeyError
ids.append(i.id)
assert set(ids) == {"test_1", "test_2", "test_3"}
async def test_aggregate_with_session(preset_documents, session):
q = Sample.find(Sample.increment >= 4).aggregate(
[{"$group": {"_id": "$string", "total": {"$sum": "$integer"}}}],
session=session,
)
assert q.session == session
q = Sample.find(Sample.increment >= 4, session=session).aggregate(
[{"$group": {"_id": "$string", "total": {"$sum": "$integer"}}}]
)
assert q.session == session
result = await q.to_list()
assert len(result) == 3
assert {"_id": "test_1", "total": 2} in result
assert {"_id": "test_2", "total": 6} in result
assert {"_id": "test_3", "total": 3} in result
async def test_aggregate_pymongo_kwargs(preset_documents):
with pytest.raises(OperationFailure):
await (
Sample.find(Sample.increment >= 4)
.aggregate(
[
{
"$group": {
"_id": "$string",
"total": {"$sum": "$integer"},
}
}
],
wrong=True,
)
.to_list()
)
async def test_clone(preset_documents):
q = Sample.find(Sample.increment >= 4).aggregate(
[{"$group": {"_id": "$string", "total": {"$sum": "$integer"}}}]
)
new_q = q.clone()
new_q.aggregation_pipeline.append({"a": "b"})
assert q.get_aggregation_pipeline() == [
{"$match": {"increment": {"$gte": 4}}},
{"$group": {"_id": "$string", "total": {"$sum": "$integer"}}},
]
assert new_q.get_aggregation_pipeline() == [
{"$match": {"increment": {"$gte": 4}}},
{"$group": {"_id": "$string", "total": {"$sum": "$integer"}}},
{"a": "b"},
]
@pytest.mark.parametrize("text_query_count", [0, 1, 2])
@pytest.mark.parametrize("non_text_query_count", [0, 1, 2])
async def test_with_text_queries(
text_query_count: int, non_text_query_count: int
):
text_query = {"$text": {"$search": "text_search"}}
non_text_query = {"s": "test_string"}
aggregation_pipeline = [{"$count": "count"}]
queries = []
if text_query_count:
queries.append(text_query)
if text_query_count > 1:
queries.append(text_query)
if non_text_query_count:
queries.append(non_text_query)
if non_text_query_count > 1:
queries.append(non_text_query)
query = DocumentWithTextIndexAndLink.find(*queries, fetch_links=True)
expected_aggregation_pipeline = []
if text_query_count:
expected_aggregation_pipeline.append(
{"$match": text_query}
if text_query_count == 1
else {"$match": {"$and": [text_query, text_query]}}
)
expected_aggregation_pipeline.extend(
construct_lookup_queries(query.document_model)
)
if non_text_query_count:
expected_aggregation_pipeline.append(
{"$match": non_text_query}
if non_text_query_count == 1
else {"$match": {"$and": [non_text_query, non_text_query]}}
)
expected_aggregation_pipeline.extend(aggregation_pipeline)
assert (
query.build_aggregation_pipeline(*aggregation_pipeline)
== expected_aggregation_pipeline
)
|