File: utilfunctest.py

package info (click to toggle)
python-beartype 0.22.9-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 9,504 kB
  • sloc: python: 85,502; sh: 328; makefile: 30; javascript: 18
file content (1122 lines) | stat: -rw-r--r-- 43,708 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
#!/usr/bin/env python3
# --------------------( LICENSE                            )--------------------
# Copyright (c) 2014-2025 Beartype authors.
# See "LICENSE" for further details.

'''
Project-wide **callable testers** (i.e., utility functions dynamically
validating and inspecting various properties of passed callables).

This private submodule is *not* intended for importation by downstream callers.
'''

# ....................{ IMPORTS                            }....................
from beartype.roar._roarexc import _BeartypeUtilCallableException
from beartype.typing import (
    Any,
    Optional,
)
from beartype._cave._cavefast import (
    CallableCodeObjectType,
    MethodBoundInstanceOrClassType,
    MethodDecoratorClassOrStaticTypes,
    MethodDecoratorClassType,
    MethodDecoratorPropertyType,
    MethodDecoratorStaticType,
)
from beartype._data.typing.datatypingport import TypeIs
from beartype._data.typing.datatyping import (
    Codeobjable,
    TypeException,
)
# from beartype._util.cache.utilcachecall import callable_cached
from beartype._util.func.arg.utilfuncarglen import (
    get_func_args_nonvariadic_len)
from beartype._util.func.arg.utilfuncargtest import (
    is_func_arg_variadic_positional,
    is_func_arg_variadic_keyword,
)
from beartype._util.func.utilfunccodeobj import get_func_codeobj_or_none
from collections.abc import Callable
from inspect import (
    CO_ASYNC_GENERATOR,
    CO_COROUTINE,
    CO_GENERATOR,
)

# ....................{ CONSTANTS                          }....................
#FIXME: Shift into the "beartype._data.func.datafunc" submodule, please.
FUNC_NAME_LAMBDA = '<lambda>'
'''
Default name of all **pure-Python lambda functions** (i.e., function declared
as a ``lambda`` expression embedded in a larger statement rather than as a
full-blown ``def`` statement).

Python initializes the names of *all* lambda functions to this lambda-specific
placeholder string on lambda definition.

Caveats
-------
**Usage of this placeholder to differentiate lambda from non-lambda callables
invites false positives in unlikely edge cases.** Technically, malicious third
parties may externally change the name of any lambda function *after* defining
that function. Pragmatically, no one sane should ever do such a horrible thing.
While predictably absurd, this is also the only efficient (and thus sane) means
of differentiating lambda from non-lambda callables. Alternatives require
AST-based parsing, which comes with its own substantial caveats, concerns,
edge cases, and false positives. If you must pick your poison, pick this one.
'''

# ....................{ RAISERS                            }....................
def die_unless_func_python(
    # Mandatory parameters.
    func: Codeobjable,

    # Optional parameters.
    exception_cls: TypeException = _BeartypeUtilCallableException,
    exception_prefix: str = '',
) -> None:
    '''
    Raise an exception if the passed callable is **C-based** (i.e., implemented
    in C as either a builtin bundled with the active Python interpreter *or*
    third-party C extension function).

    Equivalently, this validator raises an exception unless the passed function
    is **pure-Python** (i.e., implemented in Python as either a function or
    method).

    Parameters
    ----------
    func : Codeobjable
        Callable to be inspected.
    exception_cls : TypeException, optional
        Type of exception to be raised. Defaults to
        :class:`._BeartypeUtilCallableException`.
    exception_prefix : str, optional
        Human-readable label prefixing the representation of this object in the
        exception message. Defaults to the empty string.

    Raises
    ------
    exception_cls
         If the passed callable is C-based.

    See Also
    --------
    :func:`.is_func_codeobjable`
        Further details.
    '''

    # If that callable is *NOT* pure-Python, raise an exception.
    if not is_func_codeobjable(func):
        assert isinstance(exception_cls, type), (
            f'{repr(exception_cls)} not class.')
        assert issubclass(exception_cls, Exception), (
            f'{repr(exception_cls)} not exception subclass.')
        assert isinstance(exception_prefix, str), (
            f'{repr(exception_prefix)} not string.')

        # If that callable is uncallable, raise an appropriate exception.
        if not callable(func):
            raise exception_cls(f'{exception_prefix}{repr(func)} not callable.')
        # Else, that callable is callable.

        # Raise a human-readable exception.
        raise exception_cls(
            f'{exception_prefix}{repr(func)} not pure-Python function.')
    # Else, that callable is pure-Python.

# ....................{ RAISERS ~ descriptors              }....................
#FIXME: Unit test us up, please.
def die_unless_func_boundmethod(
    # Mandatory parameters.
    func: Any,

    # Optional parameters.
    exception_cls: TypeException = _BeartypeUtilCallableException,
    exception_prefix: str = '',
) -> None:
    '''
    Raise an exception unless the passed object is a **C-based bound instance
    method descriptor** callable implicitly instantiated and assigned on the
    instantiation of an object whose class declares an instance function (whose
    first parameter is typically named ``self``) as an instance variable of that
    object such that that callable unconditionally passes that object as the
    value of that first parameter on all calls to that callable).

    Parameters
    ----------
    func : Any
        Object to be inspected.
    exception_cls : TypeException, optional
        Type of exception to be raised. Defaults to
        :class:`._BeartypeUtilCallableException`.
    exception_prefix : str, optional
        Human-readable label prefixing the representation of this object in the
        exception message. Defaults to the empty string.

    Raises
    ------
    exception_cls
         If the passed object is *not* a bound method descriptor.

    See Also
    --------
    :func:`.is_func_boundmethod`
        Further details.
    '''

    # If this object is *NOT* a bound method descriptor, raise an exception.
    if not is_func_boundmethod(func):
        assert isinstance(exception_cls, type), (
            f'{repr(exception_cls)} not class.')
        assert issubclass(exception_cls, Exception), (
            f'{repr(exception_cls)} not exception subclass.')
        assert isinstance(exception_prefix, str), (
            f'{repr(exception_prefix)} not string.')

        # Raise a human-readable exception.
        raise exception_cls(
            f'{exception_prefix}{repr(func)} not '
            f'C-based bound instance method descriptor.'
        )
    # Else, this object is a bound method descriptor.


#FIXME: Unit test us up, please.
def die_unless_func_class_or_static_method(
    # Mandatory parameters.
    func: Any,

    # Optional parameters.
    exception_cls: TypeException = _BeartypeUtilCallableException,
    exception_prefix: str = '',
) -> None:
    '''
    Raise an exception unless the passed object is a **C-based unbound class or
    static method descriptor** (i.e., method decorated by either the builtin
    :class:`classmethod` or :class:`staticmethod` decorators, yielding a
    non-callable instance of that decorator class implemented in low-level C and
    accessible via the low-level :attr:`object.__dict__` dictionary rather than
    as class or instance attributes).

    Parameters
    ----------
    func : Any
        Object to be inspected.
    exception_cls : TypeException, optional
        Type of exception to be raised. Defaults to
        :exc:`._BeartypeUtilCallableException`.
    exception_prefix : str, optional
        Human-readable substring prefixing raised exception messages. Defaults
        to the empty string.

    Raises
    ------
    exception_cls
         If the passed object is *not* a class or static method descriptor.

    See Also
    --------
    :func:`.is_func_classmethod`
        Further details.
    '''

    # If this object is neither a class *NOR* static method descriptor, raise an
    # exception.
    if not isinstance(func, MethodDecoratorClassOrStaticTypes):
        assert isinstance(exception_cls, type), (
            f'{repr(exception_cls)} not class.')
        assert issubclass(exception_cls, Exception), (
            f'{repr(exception_cls)} not exception subclass.')
        assert isinstance(exception_prefix, str), (
            f'{repr(exception_prefix)} not string.')

        # Raise a human-readable exception.
        raise exception_cls(
            f'{exception_prefix}{repr(func)} not '
            f'C-based unbound @classmethod or @staticmethod descriptor.'
        )
    # Else, this object is a class or static method descriptor.


#FIXME: Currently unused, but extensively tested. *shrug*
def die_unless_func_classmethod(
    # Mandatory parameters.
    func: Any,

    # Optional parameters.
    exception_cls: TypeException = _BeartypeUtilCallableException,
    exception_prefix: str = '',
) -> None:
    '''
    Raise an exception unless the passed object is a **C-based unbound class
    method descriptor** (i.e., method decorated by the builtin
    :class:`classmethod` decorator, yielding a non-callable instance of that
    :class:`classmethod` decorator class implemented in low-level C and
    accessible via the low-level :attr:`object.__dict__` dictionary rather than
    as class or instance attributes).

    Parameters
    ----------
    func : Any
        Object to be inspected.
    exception_cls : TypeException, optional
        Type of exception to be raised. Defaults to
        :class:`._BeartypeUtilCallableException`.
    exception_prefix : str, optional
        Human-readable label prefixing the representation of this object in the
        exception message. Defaults to the empty string.

    Raises
    ------
    exception_cls
         If the passed object is *not* a class method descriptor.

    See Also
    --------
    :func:`.is_func_classmethod`
        Further details.
    '''

    # If this object is *NOT* a class method descriptor, raise an exception.
    if not is_func_classmethod(func):
        assert isinstance(exception_cls, type), (
            f'{repr(exception_cls)} not class.')
        assert issubclass(exception_cls, Exception), (
            f'{repr(exception_cls)} not exception subclass.')
        assert isinstance(exception_prefix, str), (
            f'{repr(exception_prefix)} not string.')

        # Raise a human-readable exception.
        raise exception_cls(
            f'{exception_prefix}{repr(func)} not '
            f'C-based unbound class method descriptor.'
        )
    # Else, this object is a class method descriptor.


def die_unless_func_property(
    # Mandatory parameters.
    func: Any,

    # Optional parameters.
    exception_cls: TypeException = _BeartypeUtilCallableException,
    exception_prefix: str = '',
) -> None:
    '''
    Raise an exception unless the passed object is a **C-based unbound property
    method descriptor** (i.e., method decorated by the builtin :class:`property`
    decorator, yielding a non-callable instance of that :class:`property`
    decorator class implemented in low-level C and accessible as a class rather
    than instance attribute).

    Parameters
    ----------
    func : Any
        Object to be inspected.
    exception_cls : TypeException, optional
        Type of exception to be raised. Defaults to
        :property:`_BeartypeUtilCallableException`.
    exception_prefix : str, optional
        Human-readable label prefixing the representation of this object in the
        exception message. Defaults to the empty string.

    Raises
    ------
    exception_cls
         If the passed object is *not* a property method descriptor.

    See Also
    --------
    :func:`.is_func_property`
        Further details.
    '''

    # If this object is *NOT* a property method descriptor, raise an exception.
    if not is_func_property(func):
        assert isinstance(exception_cls, type), (
            f'{repr(exception_cls)} not class.')
        assert issubclass(exception_cls, Exception), (
            f'{repr(exception_cls)} not exception subclass.')
        assert isinstance(exception_prefix, str), (
            f'{repr(exception_prefix)} not string.')

        # Raise a human-readable exception.
        raise exception_cls(
            f'{exception_prefix}{repr(func)} not '
            f'C-based unbound property method descriptor.'
        )
    # Else, this object is a property method descriptor.


#FIXME: Currently unused, but extensively tested. *shrug*
def die_unless_func_staticmethod(
    # Mandatory parameters.
    func: Any,

    # Optional parameters.
    exception_cls: TypeException = _BeartypeUtilCallableException,
    exception_prefix: str = '',
) -> None:
    '''
    Raise an exception unless the passed object is a **C-based unbound static
    method descriptor** (i.e., method decorated by the builtin
    :class:`staticmethod` decorator, yielding a non-callable instance of that
    :class:`staticmethod` decorator class implemented in low-level C and
    accessible via the low-level :attr:`object.__dict__` dictionary rather than
    as class or instance attributes).

    Parameters
    ----------
    func : Any
        Object to be inspected.
    exception_cls : TypeException, optional
        Type of exception to be raised. Defaults to
        :static:`_BeartypeUtilCallableException`.
    exception_prefix : str, optional
        Human-readable label prefixing the representation of this object in the
        exception message. Defaults to the empty string.

    Raises
    ------
    exception_cls
         If the passed object is *not* a static method descriptor.

    See Also
    --------
    :func:`.is_func_staticmethod`
        Further details.
    '''

    # If this object is *NOT* a static method descriptor, raise an exception.
    if not is_func_staticmethod(func):
        assert isinstance(exception_cls, type), (
            f'{repr(exception_cls)} not class.')
        assert issubclass(exception_cls, Exception), (
            f'{repr(exception_cls)} not exception subclass.')
        assert isinstance(exception_prefix, str), (
            f'{repr(exception_prefix)} not string.')

        # Raise a human-readable exception.
        raise exception_cls(
            f'{exception_prefix}{repr(func)} not '
            f'C-based unbound static method descriptor.'
        )
    # Else, this object is a static method descriptor.

# ....................{ TESTERS                            }....................
def is_func_codeobjable(func: object) -> TypeIs[Callable]:
    '''
    :data:`True` only if the passed object is **code-objectable** (i.e., either
    a pure-Python callable, low-level code object underlying a pure-Python
    callable, or related object encapsulating such a low-level code object).

    This tester effectively tests whether this object is a **pure-Python
    callable** (i.e., implemented in Python as either a function or method
    rather than in C as either a builtin bundled with the active Python
    interpreter *or* third-party C extension function).

    Parameters
    ----------
    func : object
        Object to be inspected.

    Returns
    -------
    bool
        :data:`True` only if this object is code-objectable.
    '''

    # Return true only if a pure-Python code object underlies this object.
    # C-based callables are associated with *NO* code objects.
    return get_func_codeobj_or_none(func) is not None


def is_func_lambda(func: Any) -> TypeIs[Callable]:
    '''
    :data:`True` only if the passed object is a **pure-Python lambda function**
    (i.e., function declared as a ``lambda`` expression embedded in a larger
    statement rather than as a full-blown ``def`` statement).

    Parameters
    ----------
    func : object
        Object to be inspected.

    Returns
    -------
    bool
        :data:`True` only if this object is a pure-Python lambda function.
    '''

    # Return true only if this both...
    return (
        # This callable is pure-Python *AND*...
        is_func_codeobjable(func) and
        # This callable's name is the lambda-specific placeholder name
        # initially given by Python to *ALL* lambda functions. Technically,
        # this name may be externally changed by malicious third parties after
        # the declaration of this lambda. Pragmatically, no one sane would ever
        # do such a horrible thing. Would they!?!?
        #
        # While predictably absurd, this is also the only efficient (and thus
        # sane) means of differentiating lambda from non-lambda callables.
        # Alternatives require AST-based parsing, which comes with its own
        # substantial caveats, concerns, and edge cases.
        func.__name__ == FUNC_NAME_LAMBDA
    )

# ....................{ TESTERS ~ descriptor               }....................
#FIXME: Unit test us up, please.
def is_func_boundmethod(func: Any) -> TypeIs[MethodBoundInstanceOrClassType]:
    '''
    :data:`True` only if the passed object is a **C-based bound instance method
    descriptor** (i.e., callable implicitly instantiated and assigned on the
    instantiation of an object whose class declares an instance function (whose
    first parameter is typically named ``self``) as an instance variable of that
    object such that that callable unconditionally passes that object as the
    value of that first parameter on all calls to that callable).

    Caveats
    -------
    Instance method objects are *only* directly accessible as instance
    attributes. When accessed as either class attributes *or* via the low-level
    :attr:`object.__dict__` dictionary, instance methods are only functions
    (i.e., instances of the standard :class:`beartype.cave.FunctionType` type).

    Instance method objects are callable. Indeed, the callability of instance
    method objects is the entire point of instance method objects.

    Parameters
    ----------
    func : object
        Object to be inspected.

    Returns
    -------
    bool
        :data:`True` only if this object is a C-based bound instance method
        descriptor.
    '''

    # Only the penitent one-liner shall pass.
    return isinstance(func, MethodBoundInstanceOrClassType)

# ....................{ TESTERS ~ descriptor : uncallable  }....................
#FIXME: Unit test us up, please.
#FIXME: Currently unused but preserved for posterity. We'll want this someday!
# def is_func_class_property_or_static_method(func: Any)  -> TypeIs[
#     MethodDescriptorBuiltin]:
#     '''
#     :data:`True` only if the passed object is an **unbound class, property, or
#     static method descriptor** (i.e., C-based decorator type builtin to Python
#     whose instance is typically uncallable but encapsulates a callable
#     pure-Python method).
#
#     These method objects are *not* callable, as their implementations fail to
#     define the ``__call__()`` dunder method.
#
#     Parameters
#     ----------
#     func : object
#         Object to be inspected.
#
#     Returns
#     -------
#     bool
#         :data:`True` only if this object is an unbound class, property, or
#         static method descriptor.
#     '''
#
#     # Line up for the one-liner you never knew you needed in your life.
#     return isinstance(func, MethodDecoratorBuiltinTypes)


def is_func_classmethod(func: Any) -> TypeIs[MethodDecoratorClassType]:
    '''
    :data:`True` only if the passed object is an **unbound class method
    descriptor** (i.e., method decorated by the builtin :class:`classmethod`
    decorator, yielding a non-callable instance of that :class:`classmethod`
    decorator class implemented in low-level C and accessible via the low-level
    :attr:`object.__dict__` dictionary rather than as class or instance
    attributes).

    Caveats
    -------
    Class method objects are *only* directly accessible via the low-level
    :attr:`object.__dict__` dictionary. When accessed as class or instance
    attributes, class methods are indistinguishable from **bound method
    descriptors** (i.e., :class:`MethodBoundInstanceOrClassType` instances)
    bound to that class.

    Class method objects are *not* callable, as their implementations fail to
    define the ``__call__()`` dunder method.

    Parameters
    ----------
    func : object
        Object to be inspected.

    Returns
    -------
    bool
        :data:`True` only if this object is an unbound class method descriptor.
    '''

    # Now you too have seen the pure light of the one-liner.
    return isinstance(func, MethodDecoratorClassType)


def is_func_property(func: Any) -> TypeIs[MethodDecoratorPropertyType]:
    '''
    :data:`True` only if the passed object is a **C-based unbound property
    method descriptor** (i.e., method decorated by the builtin :class:`property`
    decorator, yielding a non-callable instance of that :class:`property`
    decorator class implemented in low-level C and accessible as a class rather
    than instance attribute).

    Caveats
    -------
    Property objects are directly accessible both as class attributes *and* via
    the low-level :attr:`object.__dict__` dictionary. Property objects are *not*
    accessible as instance attributes, for hopefully obvious reasons.

    Property objects are *not* callable, as their implementations fail to define
    the ``__call__`` dunder method.

    Parameters
    ----------
    func : object
        Object to be inspected.

    Returns
    -------
    bool
        :data:`True` only if this object is a pure-Python property.
    '''

    # We rejoice in the shared delight of one-liners.
    return isinstance(func, MethodDecoratorPropertyType)


def is_func_staticmethod(func: Any) -> TypeIs[MethodDecoratorStaticType]:
    '''
    :data:`True` only if the passed object is a **C-based unbound static method
    descriptor** (i.e., method decorated by the builtin :class:`staticmethod`
    decorator, yielding a non-callable instance of that :class:`staticmethod`
    decorator class implemented in low-level C and accessible via the low-level
    :attr:`object.__dict__` dictionary rather than as class or instance
    attributes).

    Caveats
    -------
    Static method objects are *only* directly accessible via the low-level
    :attr:`object.__dict__` dictionary. When accessed as class or instance
    attributes, static methods reduce to instances of the standard
    :class:`FunctionType` type.

    Static method objects are *not* callable, as their implementations fail to
    define the ``__call__`` dunder method.

    Parameters
    ----------
    func : object
        Object to be inspected.

    Returns
    -------
    bool
        :data:`True` only if this object is a pure-Python static method.
    '''

    # Does the one-liner have Buddhahood? Mu.
    return isinstance(func, MethodDecoratorStaticType)

# ....................{ TESTERS ~ async                    }....................
def is_func_async(func: object) -> TypeIs[Callable]:
    '''
    :data:`True` only if the passed object is an **asynchronous callable
    factory** (i.e., awaitable factory callable implicitly creating and
    returning an awaitable object (i.e., satisfying the
    :class:`collections.abc.Awaitable` protocol) by being declared via the
    ``async def`` syntax and thus callable *only* when preceded by comparable
    ``await`` syntax).

    Parameters
    ----------
    func : object
        Object to be inspected.

    Returns
    -------
    bool
        :data:`True` only if this object is an asynchronous callable.

    See Also
    --------
    :func:`inspect.iscoroutinefunction`
    :func:`inspect.isasyncgenfunction`
        Stdlib functions strongly inspiring this implementation.
    '''

    # Code object underlying this pure-Python callable if any *OR* "None".
    #
    # Note this tester intentionally:
    # * Inlines the tests performed by the is_func_coro() and
    #   is_func_async_generator() testers for efficiency.
    # * Calls the get_func_codeobj_or_none() with "is_unwrap" disabled
    #   rather than enabled. Why? Because the asynchronicity of this possibly
    #   higher-level wrapper has *NO* relation to that of the possibly
    #   lower-level wrappee wrapped by this wrapper. Notably, it is both
    #   feasible and commonplace for third-party decorators to enable:
    #   * Synchronous callables to be called asynchronously by wrapping
    #     synchronous callables with asynchronous closures.
    #   * Asynchronous callables to be called synchronously by wrapping
    #     asynchronous callables with synchronous closures. Indeed, our
    #     top-level "conftest.py" pytest plugin does exactly this -- enabling
    #     asynchronous tests to be safely called by pytest's currently
    #     synchronous framework.
    func_codeobj = get_func_codeobj_or_none(func)

    # If this object is *NOT* a pure-Python callable, immediately return false.
    if func_codeobj is None:
        return False
    # Else, this object is a pure-Python callable.

    # Bit field of OR-ed binary flags describing this callable.
    func_codeobj_flags = func_codeobj.co_flags

    # Return true only if these flags imply this callable to be either...
    return (
        # An asynchronous coroutine *OR*...
        func_codeobj_flags & CO_COROUTINE != 0 or
        # An asynchronous generator.
        func_codeobj_flags & CO_ASYNC_GENERATOR != 0
    )


def is_func_coro(func: object) -> TypeIs[Callable]:
    '''
    :data:`True` only if the passed object is an **asynchronous coroutine
    factory** (i.e., awaitable callable containing *no* ``yield`` expression
    implicitly creating and returning an awaitable object (i.e., satisfying the
    :class:`collections.abc.Awaitable` protocol) by being declared via the
    ``async def`` syntax and thus callable *only* when preceded by comparable
    ``await`` syntax).

    Parameters
    ----------
    func : object
        Object to be inspected.

    Returns
    -------
    bool
        :data:`True` only if this object is an asynchronous coroutine factory.

    See Also
    --------
    :func:`inspect.iscoroutinefunction`
        Stdlib function strongly inspiring this implementation.
    '''

    # Code object underlying this pure-Python callable if any *OR* "None".
    func_codeobj = get_func_codeobj_or_none(func)

    # Return true only if...
    return (
        # This object is a pure-Python callable *AND*...
        func_codeobj is not None and
        # This callable's code object implies this callable to be an
        # asynchronous coroutine.
        func_codeobj.co_flags & CO_COROUTINE != 0
    )


def is_func_async_generator(func: object) -> TypeIs[Callable]:
    '''
    :data:`True` only if the passed object is an **asynchronous generator
    factory** (i.e., awaitable callable containing one or more ``yield``
    expressions implicitly creating and returning an awaitable object (i.e.,
    satisfying the :class:`collections.abc.Awaitable` protocol) by being
    declared via the ``async def`` syntax and thus callable *only* when preceded
    by comparable ``await`` syntax).

    Parameters
    ----------
    func : object
        Object to be inspected.

    Returns
    -------
    bool
        :data:`True` only if this object is an asynchronous generator.

    See Also
    --------
    :func:`inspect.isasyncgenfunction`
        Stdlib function strongly inspiring this implementation.
    '''

    # Code object underlying this pure-Python callable if any *OR* "None".
    func_codeobj = get_func_codeobj_or_none(func)

    # Return true only if...
    return (
        # This object is a pure-Python callable *AND*...
        func_codeobj is not None and
        # This callable's code object implies this callable to be an
        # asynchronous generator.
        func_codeobj.co_flags & CO_ASYNC_GENERATOR != 0
    )

# ....................{ TESTERS ~ sync                     }....................
def is_func_sync_generator(func: object) -> TypeIs[Callable]:
    '''
    :data:`True` only if the passed object is an **synchronous generator
    factory** (i.e., iterable callable containing one or more ``yield``
    expressions implicitly creating and returning a generator object (i.e.,
    satisfying the :class:`collections.abc.Generator` protocol) by being
    declared via the ``def`` rather than ``async def`` syntax).

    Parameters
    ----------
    func : object
        Object to be inspected.

    Returns
    -------
    bool
        :data:`True` only if this object is a synchronous generator.

    See Also
    --------
    :func:`inspect.isgeneratorfunction`
        Stdlib function strongly inspiring this implementation.
    '''

    # If this object is neither...
    #
    # This logic enables this tester to differentiate synchronous generator
    # *FACTORIES* from synchronous generator *OBJECTS* (i.e., the objects those
    # factories implicitly create and return). Whereas neither asynchronous
    # coroutine objects *NOR* asynchronous generator objects have code objects
    # whose "CO_COROUTINE" and "CO_ASYNC_GENERATOR" flags are enabled,
    # synchronous generator objects do have code objects whose "CO_GENERATOR"
    # flag is enabled. Ergo, synchronous generator factories create and return
    # synchronous generator objects that are themselves technically valid
    # synchronous generator factories... which, frankly, is absurd. Explicitly
    # prohibit this ambiguity by differentiating the two here.
    if not (
        # A callable *NOR*...
        callable(func) or
        # A code object (which is uncallable by definition).
        isinstance(func, CallableCodeObjectType)
    ):
        # Then immediately return false to prevent synchronous generator objects
        # from being ambiguously conflated with synchronous generator factories.
        return False
    # Else, this object is either callable *OR* a code object. In either case,
    # this object is *NOT* a synchronous generator object.

    # Code object underlying this pure-Python callable if any *OR* "None".
    func_codeobj = get_func_codeobj_or_none(func)

    # Return true only if...
    return (
        # This object is a pure-Python callable *AND*...
        func_codeobj is not None and
        # This callable's code object implies this callable to be a
        # synchronous generator.
        func_codeobj.co_flags & CO_GENERATOR != 0
    )

# ....................{ TESTERS : nested                   }....................
def is_func_nested(func: Callable) -> bool:
    '''
    :data:`True` only if the passed callable is **nested** (i.e., a pure-Python
    callable declared in the body of another pure-Python callable or class).

    Equivalently, this tester returns :data:`True` only if that callable is
    either:

    * A closure, which by definition is nested inside another callable.
    * A method, which by definition is nested inside its class.
    * A **nested non-closure function** (i.e., a closure-like function that does
      *not* reference local attributes of the parent callable enclosing that
      function and is thus technically *not* a closure): e.g.,

      .. code-block:: python

         def muh_parent_callable():           # <-- parent callable
             def muh_nested_callable(): pass  # <-- nested non-closure function
             return muh_nested_callable

    Parameters
    ----------
    func : Callable
        Callable to be inspected.

    Returns
    -------
    bool
        :data:`True` only if this callable is nested.
    '''

    # Return true only if either...
    return (
        # That callable is a closure (in which case that closure is necessarily
        # nested inside another callable) *OR*...
        #
        # Note that this tester intentionally tests for whether that callable is
        # a closure first, as doing so efficiently reduces to a constant-time
        # attribute test -- whereas the following test for non-closure nested
        # callables inefficiently requires a linear-time string search.
        is_func_closure(func) or
        # The fully-qualified name of that callable contains one or more "."
        # delimiters, each signifying a nested lexical scope. Since *ALL*
        # callables (i.e., both pure-Python and C-based) define a non-empty
        # "__qualname__" dunder variable containing at least their unqualified
        # names, this simplistic test is guaranteed to be safe.
        #
        # Note this tester intentionally tests for the general-purpose existence
        # of a "." delimiter rather than the special-cased existence of a
        # ".<locals>." placeholder substring. Why? Because there are two types
        # of nested callables:
        # * Non-methods, which are lexically nested in a parent callable whose
        #   scope encapsulates all previously declared local variables. For
        #   unknown reasons, the unqualified names of nested non-method
        #   callables are *ALWAYS* prefixed by ".<locals>." in their
        #   "__qualname__" variables:
        #       >>> from collections.abc import Callable
        #       >>> def muh_parent_callable() -> Callable:
        #       ...     def muh_nested_callable() -> None: pass
        #       ...     return muh_nested_callable
        #       >>> muh_nested_callable = muh_parent_callable()
        #       >>> muh_parent_callable.__qualname__
        #       'muh_parent_callable'
        #       >>> muh_nested_callable.__qualname__
        #       'muh_parent_callable.<locals>.muh_nested_callable'
        # * Methods, which are lexically nested in the scope encapsulating all
        #   previously declared class variables (i.e., variables declared in
        #   class scope and thus accessible as method annotations). For unknown
        #   reasons, the unqualified names of methods are *NEVER* prefixed by
        #   ".<locals>." in their "__qualname__" variables: e.g.,
        #       >>> from typing import ClassVar
        #       >>> class MuhClass(object):
        #       ...    # Class variable declared in class scope.
        #       ...    muh_class_var: ClassVar[type] = int
        #       ...    # Instance method annotated by this class variable.
        #       ...    def muh_method(self) -> muh_class_var: return 42
        #       >>> MuhClass.muh_method.__qualname__
        #       'MuhClass.muh_method'
        '.' in func.__qualname__
    )

# ....................{ TESTERS ~ nested : closure         }....................
def is_func_closure(func: Any) -> TypeIs[Callable]:
    '''
    :data:`True` only if the passed callable is a **closure** (i.e., nested
    callable accessing one or more variables declared by the parent callable
    also declaring that callable).

    Note that all closures are necessarily nested callables but that the
    converse is *not* necessarily the case. In particular, a nested callable
    accessing *no* variables declared by the parent callable also declaring that
    callable is *not* a closure; it's simply a nested callable.

    Parameters
    ----------
    func : Callable
        Callable to be inspected.

    Returns
    -------
    bool
        :data:`True` only if this callable is a closure.
    '''

    # Return true only if that callable defines the closure-specific
    # "__closure__" dunder variable whose value is either:
    # * If that callable is a closure, a tuple of zero or more cell variables.
    # * If that callable is a pure-Python non-closure, "None".
    # * If that callable is C-based, undefined.
    return getattr(func, '__closure__', None) is not None

# ....................{ TESTERS ~ wrapper                  }....................
def is_func_wrapper(func: Any) -> TypeIs[Callable]:
    '''
    :data:`True` only if the passed object is a **callable wrapper** (i.e.,
    callable decorated by the standard :func:`functools.wraps` decorator for
    wrapping a pure-Python callable with additional functionality defined by a
    higher-level decorator).

    Note that this tester returns :data:`True` for both pure-Python and C-based
    callable wrappers. As an example of the latter, the standard
    :func:`functools.lru_cache` decorator creates and returns low-level C-based
    callable wrappers of the private type :class:`functools._lru_cache_wrapper`
    wrapping pure-Python callables.

    Parameters
    ----------
    func : object
        Object to be inspected.

    Returns
    -------
    bool
        :data:`True` only if this object is a callable wrapper.
    '''

    # Return true only if this object defines a dunder attribute uniquely
    # specific to the @functools.wraps decorator.
    #
    # Technically, *ANY* callable (including non-wrappers *NOT* created by the
    # @functools.wraps decorator) could trivially define this attribute; ergo,
    # this invites the possibility of false positives. Pragmatically, doing so
    # would violate ad-hoc standards and real-world practice across the
    # open-source ecosystem; ergo, this effectively excludes false positives.
    return hasattr(func, '__wrapped__')


def is_func_wrapper_isomorphic(
    # Mandatory parameters.
    func: Any,

    # Optional parameters.
    wrapper: Optional[Callable] = None,
) -> TypeIs[Callable]:
    '''
    :data:`True` only if the passed object is an **isomorphic wrapper** (i.e.,
    callable decorated by the standard :func:`functools.wraps` decorator for
    wrapping a pure-Python callable with additional functionality defined by a
    higher-level decorator such that that wrapper isomorphically preserves both
    the number and types of all passed parameters and returns by accepting only
    a variadic positional argument and a variadic keyword argument).

    This tester enables callers to detect when a user-defined callable has been
    decorated by an isomorphic decorator, which constitutes *most* real-world
    decorators of interest.

    This tester is currently *not* memoized for efficiency, despite performing a
    relatively non-trivial (albeit technically :math:`O(1)`) operation. Why?
    Because this tester should typically be called at most once by the parent
    :func:`beartype._util.func.utilfuncwrap.unwrap_func_all_isomorphic`
    function, which is currently:

    * The *only* other function calling this tester.
    * Itself currently unmemoized.

    Caveats
    -------
    **This tester is merely a heuristic** -- albeit a reasonably robust
    heuristic likely to succeed in almost all real-world use cases. Nonetheless,
    this tester *could* return false positives and negatives in edge cases.

    Parameters
    ----------
    func : object
        Object to be inspected.
    wrapper : Optional[Callable]
        Wrapper callable to be unwrapped in the event that the callable to be
        inspected for isomorphism differs from the callable to be unwrapped.
        Typically, these two callables are the same. Edge cases in which these
        two callables differ include:

        * When ``wrapper`` is a **pseudo-callable** (i.e., otherwise uncallable
          object whose type renders that object callable by defining the
          ``__call__()`` dunder method) *and* ``func`` is that ``__call__()``
          dunder method. If that pseudo-callable wraps a lower-level callable,
          then that pseudo-callable (rather than ``__call__()`` dunder method)
          defines the ``__wrapped__`` instance variable providing that callable.

        Defaults to :data:`None`, in which case this parameter *actually*
        defaults to ``func``.

    Returns
    -------
    bool
        :data:`True` only if this object is an isomorphic decorator wrapper.
    '''

    # If the caller failed to explicitly pass a callable to be unwrapped,
    # default the callable to be unwrapped to the passed callable.
    if wrapper is None:
        wrapper = func
    # Else, the caller explicitly passed a callable to be unwrapped. In this
    # case, preserve that callable as is.

    # If that callable is *NOT* a wrapper, immediately return false.
    if not is_func_wrapper(wrapper):
        return False
    # Else, that callable is a wrapper.

    # Number of non-variadic arguments permitted for this wrapper if isomorphic,
    # defaulting to 0.
    func_args_nonvariadic_len = 0

    # If this object is a C-based bound method descriptor...
    if is_func_boundmethod(func):
        # Avoid circular import dependencies.
        from beartype._util.func.utilfuncwrap import (
            unwrap_func_boundmethod_once)
        # print(f'Detecting bound method f{repr(func)} isomorphism...')

        # Unwrap this descriptor to the pure-Python callable encapsulated by
        # this descriptor.
        func = unwrap_func_boundmethod_once(func)

        # Permit this pure-Python callable to accept exactly one non-variadic
        # argument, typically named "self" whose value is the object to which
        # this bound method descriptor was bound at object instantiation time.
        func_args_nonvariadic_len = 1
    # Else, this object is *NOT* a C-based bound method descriptor.

    # Code object underlying that callable as is (rather than possibly unwrapped
    # to another code object entirely) if that callable is pure-Python *OR*
    # "None" otherwise (i.e., if that callable is C-based).
    func_codeobj = get_func_codeobj_or_none(func)

    # If that callable is C-based...
    if not func_codeobj:  # pragma: no cover
        print(f'Detecting C-based callable {repr(func)} isomorphism...')
        # Return true only if that C-based callable is the __call__() dunder
        # method of a pseudo-callable parent object. Although this tester
        # *CANNOT* positively decide whether that object is isomorphic or not,
        # *ALMOST* all __call__() dunder methods are C-based. Technically, this
        # *COULD* constitute a false positive in various edge cases.
        # Pragmatically, the alternatives are all worse. Blindly rejecting *ALL*
        # C-based __call__() dunder methods as non-isomorphic would effectively
        # prevent @beartype from decorating numerous pseudo-callable objects of
        # interest, including:
        # * Pseudo-callables dynamically generated by the third-party
        #   "@jax.jit" decorator: e.g.,
        #       from beartype import beartype
        #       from jax import jit
        #
        #       # The @jax.jit decorator creates and returns a C-based
        #       # pseudo-callable object defining an isomorphic __call__()
        #       # dunder method. If this tester erroneously rejected that method
        #       # as non-isomorphic, @beartype would be unable to decorate these
        #       # pseudo-callable objects! Clearly, that would be bad.
        #       @beartype
        #       @jit
        #       def muh_func(muh_arg: int) -> int:
        #           return muh_arg
        return func.__name__ == '__call__'
    # Else, that callable is pure-Python.

    # Return true only if...
    return (
        # That callable accepts no non-variadic arguments *AND*...
        (
            get_func_args_nonvariadic_len(func_codeobj) ==
            func_args_nonvariadic_len
        ) and
        # That callable accepts variadic positional and/or keyword arguments.
        (
            is_func_arg_variadic_positional(func_codeobj) or
            is_func_arg_variadic_keyword(func_codeobj)
        )
    )