File: __init__.py

package info (click to toggle)
python-beziers 0.6.0%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 672 kB
  • sloc: python: 3,160; makefile: 20
file content (826 lines) | stat: -rw-r--r-- 31,669 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
import math
from typing import Iterator, List, Optional, Tuple

from beziers.boundingbox import BoundingBox
from beziers.cubicbezier import CubicBezier
from beziers.line import Line
from beziers.path.representations.Nodelist import Node, NodelistRepresentation
from beziers.path.representations.Segment import SegmentRepresentation
from beziers.point import Point
from beziers.segment import Segment
from beziers.utils.booleanoperationsmixin import BooleanOperationsMixin
from beziers.utils.samplemixin import SampleMixin

if not hasattr(math, "isclose"):

    def isclose(a, b, rel_tol=1e-9, abs_tol=0.0):
        return abs(a - b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)

    math.isclose = isclose


class BezierPath(BooleanOperationsMixin, SampleMixin, object):
    """`BezierPath` represents a collection of `Segment` objects - the
    curves and lines that make up a path.

    One of the really fiddly things about manipulating Bezier paths in
    a computer is that there are various ways to represent them.
    Different applications prefer different representations. For instance,
    when you're drawing a path on a canvas, you often want a list of nodes
    like so::

      { "x":255.0, "y":20.0, "type":"curve"},
      { "x":385.0, "y":20.0, "type":"offcurve"},
      { "x":526.0, "y":79.0, "type":"offcurve"},
      { "x":566.0, "y":135.0, "type":"curve"},
      { "x":585.0, "y":162.0, "type":"offcurve"},
      { "x":566.0, "y":260.0, "type":"offcurve"},
      { "x":484.0, "y":281.0, "type":"curve"},
      ...

    But when you're doing Clever Bezier Mathematics, you generally want
    a list of segments instead::

      [ (255.0,20.0), (385.0,20.0), (526.0,79.0), (566.0,135.0)],
      [ (566.0,135.0), (585.0,162.0), (566.0,260.0), (484.0,281.0)],

    The Beziers module is designed to allow you to move fluidly between these
    different representations depending on what you're wanting to do.

    """

    def __init__(self):
        self.activeRepresentation = None
        self.closed = True

    @classmethod
    def fromPoints(self, points, error=50.0, cornerTolerance=20.0, maxSegments=20):
        """Fit a poly-bezier curve to the points given. This operation should be familiar
            from 'pencil' tools in a vector drawing application: the application samples points
            where your mouse pointer has been dragged, and then turns the sketch into a Bezier
            path. The goodness of fit can be controlled by tuning the `error` parameter. Corner
            detection can be controlled with `cornerTolerance`.

            Here are some points fit with `error=100.0`:

        ..  figure:: curvefit1.png
            :scale: 75 %
            :alt: curvefit1


            And with `error=10.0`:

        ..  figure:: curvefit2.png
            :scale: 75 %
            :alt: curvefit1

        """
        from beziers.utils.curvefitter import CurveFit

        segs = CurveFit.fitCurve(points, error, cornerTolerance, maxSegments)
        path = BezierPath()
        path.closed = False
        path.activeRepresentation = SegmentRepresentation(path, segs)
        return path

    @classmethod
    def fromSegments(klass, array: List[Segment]):
        """Construct a path from an array of Segment objects."""
        self = klass()
        for a in array:
            assert isinstance(a, Segment)
        self.activeRepresentation = SegmentRepresentation(self, array)
        return self

    @classmethod
    def fromNodelist(klass, array: List[Node], closed=True):
        """Construct a path from an array of Node objects."""
        self = klass()
        for a in array:
            assert isinstance(a, Node)
        self.closed = closed
        self.activeRepresentation = NodelistRepresentation(self, array)
        self.asSegments()  # Resolves a few problems
        return self

    @classmethod
    def fromGlyphsLayer(klass, layer: "GSLayer"):
        """Returns an *array of BezierPaths* from a Glyphs GSLayer object."""
        from beziers.path.representations.GSPath import GSPathRepresentation

        bezpaths = []
        for p in layer.paths:
            path = BezierPath()
            path.activeRepresentation = GSPathRepresentation(path, p)
            bezpaths.append(path)
        return bezpaths

    @classmethod
    def fromDrawable(klass, layer, *penArgs, **penKwargs):
        """Returns an *array of BezierPaths* from any object conforming to the pen protocol."""
        from beziers.utils.pens import BezierPathCreatingPen

        pen = BezierPathCreatingPen(*penArgs, **penKwargs)
        layer.draw(pen)
        return pen.paths

    @classmethod
    def fromFonttoolsGlyph(klass, font, glyphname):
        """Returns an *array of BezierPaths* from a FontTools font object and glyph name."""
        glyphset = font.getGlyphSet()
        from beziers.utils.pens import BezierPathCreatingPen

        pen = BezierPathCreatingPen(glyphset)
        glyph = font.getGlyphSet()[glyphname]
        glyph.draw(pen)
        return pen.paths

    def asSegments(self) -> List[Segment]:
        """Return the path as a list of segments (either Line, CubicBezier,
        or, if you are exceptionally unlucky, QuadraticBezier objects)."""
        if not isinstance(self.activeRepresentation, SegmentRepresentation):
            nl = self.activeRepresentation.toNodelist()
            assert isinstance(nl, list)
            self.activeRepresentation = SegmentRepresentation.fromNodelist(self, nl)
        return self.activeRepresentation.data()

    def asNodelist(self) -> List[Node]:
        """Return the path as a list of Node objects."""
        if not isinstance(self.activeRepresentation, NodelistRepresentation):
            nl = self.activeRepresentation.toNodelist()
            assert isinstance(nl, list)
            self.activeRepresentation = NodelistRepresentation(self, nl)
        return self.activeRepresentation.data()

    def asSVGPath(self) -> str:
        """Return the path as a string suitable for a SVG <path d="..."? element."""
        segs = self.asSegments()
        pathParts = ["M %f %f" % (segs[0][0].x, segs[0][0].y)]

        operators = "xxLQC"
        for s in segs:
            op = operators[len(s)] + " "
            for pt in s[1:]:
                op = op + "%f %f " % (pt.x, pt.y)
            pathParts.append(op)
        if self.closed:
            pathParts.append("Z")

        return " ".join(pathParts)

    def asMatplot(self):
        from matplotlib.path import Path

        nl = self.asNodelist()
        verts = [(nl[0].x, nl[0].y)]
        codes = [Path.MOVETO]

        for i in range(1, len(nl)):
            n = nl[i]
            verts.append((n.x, n.y))
            if n.type == "offcurve":
                if nl[i + 1].type == "offcurve" or nl[i - 1].type == "offcurve":
                    codes.append(Path.CURVE4)
                else:
                    codes.append(Path.CURVE3)
            elif n.type == "curve":
                if (
                    nl[i - 1].type == "offcurve"
                    and i > 2
                    and nl[i - 2].type == "offcurve"
                ):
                    codes.append(Path.CURVE4)
                else:
                    codes.append(Path.CURVE3)
            elif n.type == "line":
                codes.append(Path.LINETO)
            else:
                raise "Unknown node type"
        if self.closed:
            verts.append((nl[0].x, nl[0].y))
            codes.append(Path.CLOSEPOLY)
        return Path(verts, codes)

    def plot(self, ax, **kwargs):
        """Plot the path on a Matplot subplot which you supply

        ::

              import matplotlib.pyplot as plt
              fig, ax = plt.subplots()
              path.plot(ax)

        """
        import matplotlib.patches as patches
        import matplotlib.pyplot as plt
        from matplotlib.lines import Line2D

        path = self.asMatplot()
        if "lw" not in kwargs:
            kwargs["lw"] = 2
        if "fill" not in kwargs:
            kwargs["fill"] = False
        drawNodes = "drawNodes" not in kwargs or kwargs["drawNodes"] != False
        if "drawNodes" in kwargs:
            kwargs.pop("drawNodes")
        patch = patches.PathPatch(path, **kwargs)
        ax.add_patch(patch)
        left, right = ax.get_xlim()
        top, bottom = ax.get_ylim()
        bounds = self.bounds()
        bounds.addMargin(50)
        if not (left == 0.0 and right == 1.0 and top == 0.0 and bottom == 1.0):
            bounds.extend(Point(left, top))
            bounds.extend(Point(right, bottom))
        ax.set_xlim(bounds.left, bounds.right)
        ax.set_ylim(bounds.bottom, bounds.top)
        if drawNodes:
            nl = self.asNodelist()
            for i in range(0, len(nl)):
                n = nl[i]
                if n.type == "offcurve":
                    circle = plt.Circle(
                        (n.x, n.y), 2, fill=True, color="black", alpha=0.5
                    )
                    ax.add_artist(circle)
                    if i + 1 < len(nl) and nl[i + 1].type != "offcurve":
                        l = Line2D(
                            [n.x, nl[i + 1].x],
                            [n.y, nl[i + 1].y],
                            linewidth=2,
                            color="black",
                            alpha=0.3,
                        )
                        ax.add_artist(l)
                    if i - 0 >= 0 and nl[i - 1].type != "offcurve":
                        l = Line2D(
                            [n.x, nl[i - 1].x],
                            [n.y, nl[i - 1].y],
                            linewidth=2,
                            color="black",
                            alpha=0.3,
                        )
                        ax.add_artist(l)
                else:
                    circle = plt.Circle((n.x, n.y), 3, color="black", alpha=0.3)
                    ax.add_artist(circle)

    def clone(self) -> "BezierPath":
        """Return a new path which is an exact copy of this one"""
        p = BezierPath.fromSegments(self.asSegments())
        p.closed = self.closed
        return p

    def round(self) -> None:
        """Rounds the points of this path to integer coordinates."""
        segs = self.asSegments()
        for s in segs:
            s.round()
        self.activeRepresentation = SegmentRepresentation(self, segs)

    def bounds(self) -> BoundingBox:
        """Determine the bounding box of the path, returned as a
        `BoundingBox` object."""
        bbox = BoundingBox()
        for seg in self.asSegments():
            bbox.extend(seg)
        return bbox

    def splitAtPoints(self, splitlist: List[Tuple[Segment, float]]):
        """Split the path at the given points. The splitlist is a list of
        tuples, each containing a segment and a time (0->1) along that
        segment. For instance, to split a path at the midpoint of the first
        segment, you would do::

            path.splitAtPoints([(path.asSegments()[0], 0.5)])

        """

        def mapx(v, ds):
            return (v - ds) / (1 - ds)

        segs = self.asSegments()
        newsegs = []
        # Cluster splitlist by seg
        newsplitlist = {}
        for seg, t in splitlist:
            if seg not in newsplitlist:
                newsplitlist[seg] = []
            newsplitlist[seg].append(t)
        for k in newsplitlist:
            newsplitlist[k] = sorted(newsplitlist[k])
        # Now walk the path
        for seg in segs:
            if seg in newsplitlist:
                tList = newsplitlist[seg]
                while len(tList) > 0:
                    t = tList.pop(0)
                    if t < 1e-8:
                        continue
                    seg1, seg2 = seg.splitAtTime(t)
                    newsegs.append(seg1)
                    seg = seg2
                    for i in range(0, len(tList)):
                        tList[i] = mapx(tList[i], t)
            newsegs.append(seg)
        self.activeRepresentation = SegmentRepresentation(self, newsegs)

    def addExtremes(self) -> "BezierPath":
        """Add extreme points to the path."""
        segs = self.asSegments()
        splitlist = []
        for seg in segs:
            for t in seg.findExtremes():
                splitlist.append((seg, t))
        self.splitAtPoints(splitlist)
        return self

    @property
    def length(self) -> float:
        """Returns the length of the whole path."""
        segs = self.asSegments()
        length = 0
        for s in segs:
            length += s.length
        return length

    def pointAtTime(self, t: float) -> Point:
        """Returns the point at time t (0->1) along the curve, where 1 is the end of the whole curve."""
        segs = self.asSegments()
        if t == 1.0:
            return segs[-1].pointAtTime(1)
        t *= len(segs)
        seg = segs[int(math.floor(t))]
        return seg.pointAtTime(t - math.floor(t))

    def lengthAtTime(self, t: float) -> float:
        """Returns the length of the subset of the path from the start
        up to the point t (0->1), where 1 is the end of the whole curve."""
        segs = self.asSegments()
        t *= len(segs)
        length = 0
        for s in segs[: int(math.floor(t))]:
            length += s.length
        seg = segs[int(math.floor(t))]
        s1, s2 = seg.splitAtTime(t - math.floor(t))
        length += s1.length
        return length

    def offset(self, vector: Point, rotateVector=True) -> "BezierPath":
        """Returns a new BezierPath which approximates offsetting the
            current Bezier path by the given vector. Note that the vector
            will be rotated around the normal of the curve so that the
            offsetting always happens on the same 'side' of the curve:

        ..  figure:: offset1.png
            :scale: 75 %
            :alt: offset1

            If you don't want that and you want 'straight' offsetting instead
            (which may intersect with the original curve), pass
            `rotateVector=False`:

        ..  figure:: offset2.png
            :scale: 75 %
            :alt: offset1

        """
        # Method 1 - curve fit
        newsegs = []
        points = []

        def finishPoints(newsegs, points):
            if len(points) > 0:
                bp = BezierPath.fromPoints(points, error=0.1, cornerTolerance=1)
                newsegs.extend(bp.asSegments())
            while len(points) > 0:
                points.pop()

        for seg in self.asSegments():
            if isinstance(seg, Line):
                finishPoints(newsegs, points)
                newsegs.append(seg.translated(vector))
            else:
                t = 0.0
                while t < 1.0:
                    if rotateVector:
                        points.append(
                            seg.pointAtTime(t)
                            + vector.rotated(Point(0, 0), seg.normalAtTime(t).angle)
                        )
                    else:
                        points.append(seg.pointAtTime(t) + vector)
                    step = max(abs(seg.curvatureAtTime(t)), 0.1)
                    t = t + min(seg.length / step, 0.1)
        finishPoints(newsegs, points)
        newpath = BezierPath()
        newpath.activeRepresentation = SegmentRepresentation(newpath, newsegs)
        return newpath

    def append(self, other: "BezierPath", joinType="line") -> "BezierPath":
        """Append another path to this one. If the end point of the first
        path is not the same as the start point of the other path, a line
        will be drawn between them."""
        segs1 = self.asSegments()
        segs2 = other.asSegments()
        if len(segs1) < 1:
            self.activeRepresentation = SegmentRepresentation(self, segs2)
            return
        if len(segs2) < 1:
            self.activeRepresentation = SegmentRepresentation(self, segs1)
            return

        # Which way around should they go?
        dist1 = segs1[-1].end.distanceFrom(segs2[0].start)
        dist2 = segs1[-1].end.distanceFrom(segs2[-1].end)
        if dist2 > 2 * dist1:
            segs2 = list(reversed([x.reversed() for x in segs2]))

        # Add a line between if they don't match up
        if segs1[-1].end != segs2[0].start:
            segs1.append(Line(segs1[-1].end, segs2[0].start))

        # XXX Check for discontinuities and harmonize if needed

        segs1.extend(segs2)
        self.activeRepresentation = SegmentRepresentation(self, segs1)
        return self

    def reverse(self) -> "BezierPath":
        """Reverse this path (mutates path)."""
        seg2 = [x.reversed() for x in self.asSegments()]
        self.activeRepresentation = SegmentRepresentation(self, list(reversed(seg2)))
        return self

    def translate(self, vector: Point) -> "BezierPath":
        """Translates the path by a given vector."""
        seg2 = [x.translated(vector) for x in self.asSegments()]
        self.activeRepresentation = SegmentRepresentation(self, seg2)
        return self

    def rotate(self, about: Point, angle: float) -> "BezierPath":
        """Rotate the path by a given vector."""
        seg2 = [x.rotated(about, angle) for x in self.asSegments()]
        self.activeRepresentation = SegmentRepresentation(self, seg2)
        return self

    def scale(self, by: float) -> "BezierPath":
        """Scales the path by a given magnitude."""
        seg2 = [x.scaled(by) for x in self.asSegments()]
        self.activeRepresentation = SegmentRepresentation(self, seg2)
        return self

    def balance(self) -> None:
        """Performs Tunni balancing on the path."""
        segs = self.asSegments()
        for x in segs:
            if isinstance(x, CubicBezier):
                x.balance()
        self.activeRepresentation = SegmentRepresentation(self, segs)
        return self

    def findDiscontinuities(self):
        """Not implemented yet"""
        raise NotImplementedError

    def roundCorners(self):
        """Not implemented yet"""
        raise NotImplementedError

    def dash(self, lineLength=50, gapLength=None) -> List["BezierPath"]:
        """Returns a list of BezierPath objects created by chopping
            this path into a dashed line::

              paths = path.dash(lineLength = 20, gapLength = 50)

        ..  figure:: dash.png
            :scale: 75 %
            :alt: path.dash(lineLength = 20, gapLength = 50)
        """
        if not gapLength:
            gapLength = lineLength
        granularity = self.length
        newpaths = []
        points = []
        for t in self.regularSampleTValue(granularity):
            lenSoFar = self.lengthAtTime(t)  # Super inefficient. But simple!
            lenSoFar = lenSoFar % (lineLength + gapLength)
            if lenSoFar >= lineLength and len(points) > 0:
                # When all you have is a hammer...
                bp = BezierPath.fromPoints(points, error=1, cornerTolerance=1)
                points = []
                if len(bp.asSegments()) > 0:
                    newpaths.append(bp)
            elif lenSoFar <= lineLength:
                points.append(self.pointAtTime(t))
        return newpaths

    def segpairs(self) -> Iterator[Tuple[Segment, Segment]]:
        """Returns an iterator of pairs of segments."""
        segs = self.asSegments()
        for i in range(0, len(segs) - 1):
            yield (segs[i], segs[i + 1])

    def harmonize(self, seg1, seg2):
        if seg1.end.x != seg2.start.x or seg1.end.y != seg2.start.y:
            return
        a1, a2 = seg1[1], seg1[2]
        b1, b2 = seg2[1], seg2[2]
        intersections = Line(a1, a2).intersections(Line(b1, b2), limited=False)
        if not intersections[0]:
            return
        p0 = a1.distanceFrom(a2) / a2.distanceFrom(intersections[0].point)
        p1 = b1.distanceFrom(intersections[0].point) / b1.distanceFrom(b2)
        r = math.sqrt(p0 * p1)
        t = r / (r + 1)
        newA3 = a2.lerp(b1, t)
        fixup = seg2.start - newA3
        seg1[2] += fixup
        seg2[1] += fixup

    def flatten(self, degree=8) -> "BezierPath":
        """Returns a Path made up of line segments that approximate the path."""
        segs = []
        for s in self.asSegments():
            segs.extend(s.flatten(degree))
        return BezierPath.fromSegments(segs)

    def windingNumberOfPoint(self, pt: Point) -> int:
        """Returns the winding number of a point with respect to the path."""
        bounds = self.bounds()
        bounds.addMargin(10)
        ray1 = Line(Point(bounds.left, pt.y), pt)
        ray2 = Line(Point(bounds.right, pt.y), pt)
        leftIntersections = {}
        rightIntersections = {}
        leftWinding = 0
        rightWinding = 0
        for s in self.asSegments():
            for i in s.intersections(ray1):
                # print("Found left intersection with %s: %s" % (ray1, i.point))
                leftIntersections[i.point] = i

            for i in s.intersections(ray2):
                rightIntersections[i.point] = i

        for i in leftIntersections.values():
            # XXX tangents here are all positive? Really?
            # print(i.seg1, i.t1, i.point)
            tangent = s.tangentAtTime(i.t1)
            # print("Tangent at left intersection %s is %f" % (i.point,tangent.y))
            leftWinding += int(math.copysign(1, tangent.y))

        for i in rightIntersections.values():
            tangent = s.tangentAtTime(i.t1)
            # print("Tangent at right intersection %s is %f" % (i.point,tangent.y))
            rightWinding += int(math.copysign(1, tangent.y))

        # print("Left winding: %i right winding: %i " % (leftWinding,rightWinding))
        return max(abs(leftWinding), abs(rightWinding))

    def pointIsInside(self, pt: Point) -> bool:
        """Returns true if the given point lies on the "inside" of the path,
        assuming an 'even-odd' winding rule where self-intersections are considered
        outside."""
        li = self.windingNumberOfPoint(pt)
        return li % 2 == 1

    @property
    def signed_area(self) -> float:
        """Approximates the area under a closed path by flattening and treating as a polygon.
        Returns the signed area; positive means the path is counter-clockwise,
        negative means it is clockwise."""
        flat = self.flatten()
        area = 0
        for s in flat.asSegments():
            area = area + (s.start.x * s.end.y) - (s.start.y * s.end.x)
        area = area / 2.0
        return area

    @property
    def area(self) -> float:
        """Approximates the area under a closed path by flattening and treating as a
        polygon. Returns the unsigned area. Use :py:meth:`signed_area` if you want
        the signed area."""
        return abs(self.signed_area)

    @property
    def direction(self) -> int:
        """Returns the direction of the path: -1 for clockwise and 1 for counterclockwise."""
        return math.copysign(1, self.signed_area)

    @property
    def centroid(self) -> Optional[Point]:
        """Returns the centroid of the path's bounding box, or
        None if the path is open.
        """
        if not self.closed:
            return None
        return self.bounds().centroid  # Really?

    def drawWithBrush(self, other: "BezierPath") -> List["BezierPath"]:
        """Assuming that `other` is a closed Bezier path representing a pen or
        brush of a certain shape and that `self` is an open path, this method
        traces the brush along the path, returning an array of Bezier paths.

        `other` may also be a function which, given a time `t` (0-1), returns a closed
        path representing the shape of the brush at the given time.

        This requires the `shapely` library to be installed.
        """
        from shapely.geometry import Polygon
        from shapely.ops import unary_union

        polys = []
        samples = self.sample(self.length / 2)

        def constantBrush(t):
            return other

        brush = other
        if not callable(brush):
            brush = constantBrush

        c = brush(0).centroid

        from itertools import tee

        def pairwise(iterable):
            "s -> (s0,s1), (s1,s2), (s2, s3), ..."
            a, b = tee(iterable)
            next(b, None)
            return zip(a, b)

        t = 0
        for n in samples:
            brushHere = brush(t).clone().flatten()
            brushHere.translate(n - brushHere.centroid)
            polys.append(Polygon([(x[0].x, x[0].y) for x in brushHere.asSegments()]))
            t = t + 1.0 / len(samples)
        concave_hull = unary_union(polys)
        ll = []
        for x, y in pairwise(concave_hull.exterior.coords):
            l = Line(Point(x[0], x[1]), Point(y[0], y[1]))
            ll.append(l)
        paths = [BezierPath.fromSegments(ll)]

        for interior in concave_hull.interiors:
            ll = []
            for x, y in pairwise(interior.coords):
                l = Line(Point(x[0], x[1]), Point(y[0], y[1]))
                ll.append(l)
            paths.append(BezierPath.fromSegments(ll))

        return paths

    def quadraticsToCubics(self) -> None:
        """Converts all quadratic segments in the path to cubic Beziers."""
        segs = self.asSegments()
        for i, s in enumerate(segs):
            if len(s) == 3:
                segs[i] = s.toCubicBezier()
        return self

    def thicknessAtX(path, x: float) -> Optional[float]:
        """Returns the thickness of the path at x-coordinate ``x``."""
        bounds = path.bounds()
        bounds.addMargin(10)
        ray = Line(Point(x - 0.1, bounds.bottom), Point(x + 0.1, bounds.top))
        intersections = []
        for seg in path.asSegments():
            intersections.extend(seg.intersections(ray))
        if len(intersections) < 2:
            return None
        intersections = list(sorted(intersections, key=lambda i: i.point.y))
        i1, i2 = intersections[0:2]
        inorm1 = i1.seg1.normalAtTime(i1.t1)
        ray1 = Line(i1.point + (inorm1 * 1000), i1.point + (inorm1 * -1000))
        iii = i2.seg1.intersections(ray1)
        if iii:
            ll1 = i1.point.distanceFrom(iii[0].point)
        else:
            # Simple, vertical version
            return abs(i1.point.y - i2.point.y)

        inorm2 = i2.seg1.normalAtTime(i2.t1)
        ray2 = Line(i2.point + (inorm2 * 1000), i2.point + (inorm2 * -1000))
        iii = i1.seg1.intersections(ray2)
        if iii:
            ll2 = i2.point.distanceFrom(iii[0].point)
            return (ll1 + ll2) * 0.5
        else:
            return ll1

        # midpoint = (i1.point + i2.point) / 2
        # # Find closest path to midpoint
        # # Find the tangent at that time
        # inorm2 = i2.seg1.normalAtTime(i2.t1)

    def distanceToPath(self, other: "BezierPath", samples=10) -> float:
        """Finds the distance to the other curve at its closest point,
        along with the t values for the closest point at each segment
        and the relevant segments.

        Returns: ``distance, t1, t2, seg1, seg2``."""
        from beziers.utils.curvedistance import curveDistance

        segs1 = self.asSegments()
        segs2 = other.asSegments()
        minDistance = None
        # Find closest segment pair.
        for s1 in segs1:
            samples1 = s1.sample(samples)
            for s2 in segs2:
                samples2 = s2.sample(samples)
                d = min(
                    [p1.squareDistanceFrom(p2) for p1 in samples1 for p2 in samples2]
                )
                if not minDistance or d < minDistance:
                    minDistance = d
                    closestPair = (s1, s2)
        c = curveDistance(closestPair[0], closestPair[1])
        return (c[0], c[1], c[2], closestPair[0], closestPair[1])

    def tidy(self, **kwargs) -> None:
        """Tidies a curve by adding extremes, and then running
        ``removeIrrelevantSegments`` and ``smooth``. ``relLength``,
        ``absLength``, ``maxCollectionSize``, ``lengthLimit`` and
        ``cornerTolerance`` parameters are passed to the relevant routine."""
        self.addExtremes()
        self.removeIrrelevantSegments(
            **{k: v for k, v in kwargs.items() if k in ["relLength", "absLength"]}
        )
        self.smooth(
            **{
                k: v
                for k, v in kwargs.items()
                if k in ["maxCollectionSize", "lengthLimit", "cornerTolerance"]
            }
        )

    def removeIrrelevantSegments(self, relLength=1 / 50000, absLength=0):
        """Removes small and collinear line segments. Collinear line
        segments are adjacent line segments which are heading in the same
        direction, and hence can be collapsed into a single segment.
        Small segments (those less than ``absLength`` units, or less than
        ``relLength`` as a fraction of the path's total length) are
        removed entirely."""
        segs = self.asSegments()
        newsegs = [segs[0]]
        smallLength = self.length * relLength
        for i in range(1, len(segs)):
            prev = newsegs[-1]
            this = segs[i]
            if this.length < smallLength or this.length < absLength:
                this[0] = prev[0]
                newsegs[-1] = this
                continue
            if len(prev) == 2 and len(this) == 2:
                if math.isclose(
                    prev.tangentAtTime(0).angle, this.tangentAtTime(0).angle
                ):
                    this[0] = prev[0]
                    newsegs[-1] = this
                    continue
            newsegs.append(this)
        self.activeRepresentation = SegmentRepresentation(self, newsegs)
        return self

    def smooth(self, maxCollectionSize=30, lengthLimit=20, cornerTolerance=10):
        """Smooths a curve, by collating lists of small (at most ``lengthLimit``
        units long) segments at most ``maxCollectionSize`` segments at a time,
        and running them through a curve fitting algorithm. The list collation
        also stops when one segment turns more than ``cornerTolerance`` degrees
        away from the previous one, so that corners are not smoothed."""
        smallLineLength = lengthLimit
        segs = self.asSegments()
        i = 0
        collection = []
        while i < len(segs):
            s = segs[i]
            if s.length < smallLineLength and len(collection) <= maxCollectionSize:
                collection.append(s)
            else:
                corner = False
                if len(collection) > 1:
                    last = collection[-1]
                    if abs(
                        last.tangentAtTime(1).angle - s.tangentAtTime(0).angle
                    ) > math.radians(cornerTolerance):
                        corner = True
                if len(collection) > maxCollectionSize or corner or i == len(segs) - 2:
                    points = [x.start for x in collection]
                    bp = BezierPath.fromPoints(points)
                    if len(bp.asSegments()) > 0:
                        segs[i - len(collection) : i] = bp.asSegments()
                        i -= len(collection)
                    collection = []
            i += 1
        if len(collection) > 0:
            points = [x.start for x in collection]
            bp = BezierPath.fromPoints(points)
            if len(bp.asSegments()) > 0:
                segs[i - (1 + len(collection)) : i - 1] = bp.asSegments()

        self.activeRepresentation = SegmentRepresentation(self, segs)
        return self