1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
|
import math
from typing import Iterator, List, Optional, Tuple
from beziers.boundingbox import BoundingBox
from beziers.cubicbezier import CubicBezier
from beziers.line import Line
from beziers.path.representations.Nodelist import Node, NodelistRepresentation
from beziers.path.representations.Segment import SegmentRepresentation
from beziers.point import Point
from beziers.segment import Segment
from beziers.utils.booleanoperationsmixin import BooleanOperationsMixin
from beziers.utils.samplemixin import SampleMixin
if not hasattr(math, "isclose"):
def isclose(a, b, rel_tol=1e-9, abs_tol=0.0):
return abs(a - b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)
math.isclose = isclose
class BezierPath(BooleanOperationsMixin, SampleMixin, object):
"""`BezierPath` represents a collection of `Segment` objects - the
curves and lines that make up a path.
One of the really fiddly things about manipulating Bezier paths in
a computer is that there are various ways to represent them.
Different applications prefer different representations. For instance,
when you're drawing a path on a canvas, you often want a list of nodes
like so::
{ "x":255.0, "y":20.0, "type":"curve"},
{ "x":385.0, "y":20.0, "type":"offcurve"},
{ "x":526.0, "y":79.0, "type":"offcurve"},
{ "x":566.0, "y":135.0, "type":"curve"},
{ "x":585.0, "y":162.0, "type":"offcurve"},
{ "x":566.0, "y":260.0, "type":"offcurve"},
{ "x":484.0, "y":281.0, "type":"curve"},
...
But when you're doing Clever Bezier Mathematics, you generally want
a list of segments instead::
[ (255.0,20.0), (385.0,20.0), (526.0,79.0), (566.0,135.0)],
[ (566.0,135.0), (585.0,162.0), (566.0,260.0), (484.0,281.0)],
The Beziers module is designed to allow you to move fluidly between these
different representations depending on what you're wanting to do.
"""
def __init__(self):
self.activeRepresentation = None
self.closed = True
@classmethod
def fromPoints(self, points, error=50.0, cornerTolerance=20.0, maxSegments=20):
"""Fit a poly-bezier curve to the points given. This operation should be familiar
from 'pencil' tools in a vector drawing application: the application samples points
where your mouse pointer has been dragged, and then turns the sketch into a Bezier
path. The goodness of fit can be controlled by tuning the `error` parameter. Corner
detection can be controlled with `cornerTolerance`.
Here are some points fit with `error=100.0`:
.. figure:: curvefit1.png
:scale: 75 %
:alt: curvefit1
And with `error=10.0`:
.. figure:: curvefit2.png
:scale: 75 %
:alt: curvefit1
"""
from beziers.utils.curvefitter import CurveFit
segs = CurveFit.fitCurve(points, error, cornerTolerance, maxSegments)
path = BezierPath()
path.closed = False
path.activeRepresentation = SegmentRepresentation(path, segs)
return path
@classmethod
def fromSegments(klass, array: List[Segment]):
"""Construct a path from an array of Segment objects."""
self = klass()
for a in array:
assert isinstance(a, Segment)
self.activeRepresentation = SegmentRepresentation(self, array)
return self
@classmethod
def fromNodelist(klass, array: List[Node], closed=True):
"""Construct a path from an array of Node objects."""
self = klass()
for a in array:
assert isinstance(a, Node)
self.closed = closed
self.activeRepresentation = NodelistRepresentation(self, array)
self.asSegments() # Resolves a few problems
return self
@classmethod
def fromGlyphsLayer(klass, layer: "GSLayer"):
"""Returns an *array of BezierPaths* from a Glyphs GSLayer object."""
from beziers.path.representations.GSPath import GSPathRepresentation
bezpaths = []
for p in layer.paths:
path = BezierPath()
path.activeRepresentation = GSPathRepresentation(path, p)
bezpaths.append(path)
return bezpaths
@classmethod
def fromDrawable(klass, layer, *penArgs, **penKwargs):
"""Returns an *array of BezierPaths* from any object conforming to the pen protocol."""
from beziers.utils.pens import BezierPathCreatingPen
pen = BezierPathCreatingPen(*penArgs, **penKwargs)
layer.draw(pen)
return pen.paths
@classmethod
def fromFonttoolsGlyph(klass, font, glyphname):
"""Returns an *array of BezierPaths* from a FontTools font object and glyph name."""
glyphset = font.getGlyphSet()
from beziers.utils.pens import BezierPathCreatingPen
pen = BezierPathCreatingPen(glyphset)
glyph = font.getGlyphSet()[glyphname]
glyph.draw(pen)
return pen.paths
def asSegments(self) -> List[Segment]:
"""Return the path as a list of segments (either Line, CubicBezier,
or, if you are exceptionally unlucky, QuadraticBezier objects)."""
if not isinstance(self.activeRepresentation, SegmentRepresentation):
nl = self.activeRepresentation.toNodelist()
assert isinstance(nl, list)
self.activeRepresentation = SegmentRepresentation.fromNodelist(self, nl)
return self.activeRepresentation.data()
def asNodelist(self) -> List[Node]:
"""Return the path as a list of Node objects."""
if not isinstance(self.activeRepresentation, NodelistRepresentation):
nl = self.activeRepresentation.toNodelist()
assert isinstance(nl, list)
self.activeRepresentation = NodelistRepresentation(self, nl)
return self.activeRepresentation.data()
def asSVGPath(self) -> str:
"""Return the path as a string suitable for a SVG <path d="..."? element."""
segs = self.asSegments()
pathParts = ["M %f %f" % (segs[0][0].x, segs[0][0].y)]
operators = "xxLQC"
for s in segs:
op = operators[len(s)] + " "
for pt in s[1:]:
op = op + "%f %f " % (pt.x, pt.y)
pathParts.append(op)
if self.closed:
pathParts.append("Z")
return " ".join(pathParts)
def asMatplot(self):
from matplotlib.path import Path
nl = self.asNodelist()
verts = [(nl[0].x, nl[0].y)]
codes = [Path.MOVETO]
for i in range(1, len(nl)):
n = nl[i]
verts.append((n.x, n.y))
if n.type == "offcurve":
if nl[i + 1].type == "offcurve" or nl[i - 1].type == "offcurve":
codes.append(Path.CURVE4)
else:
codes.append(Path.CURVE3)
elif n.type == "curve":
if (
nl[i - 1].type == "offcurve"
and i > 2
and nl[i - 2].type == "offcurve"
):
codes.append(Path.CURVE4)
else:
codes.append(Path.CURVE3)
elif n.type == "line":
codes.append(Path.LINETO)
else:
raise "Unknown node type"
if self.closed:
verts.append((nl[0].x, nl[0].y))
codes.append(Path.CLOSEPOLY)
return Path(verts, codes)
def plot(self, ax, **kwargs):
"""Plot the path on a Matplot subplot which you supply
::
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
path.plot(ax)
"""
import matplotlib.patches as patches
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D
path = self.asMatplot()
if "lw" not in kwargs:
kwargs["lw"] = 2
if "fill" not in kwargs:
kwargs["fill"] = False
drawNodes = "drawNodes" not in kwargs or kwargs["drawNodes"] != False
if "drawNodes" in kwargs:
kwargs.pop("drawNodes")
patch = patches.PathPatch(path, **kwargs)
ax.add_patch(patch)
left, right = ax.get_xlim()
top, bottom = ax.get_ylim()
bounds = self.bounds()
bounds.addMargin(50)
if not (left == 0.0 and right == 1.0 and top == 0.0 and bottom == 1.0):
bounds.extend(Point(left, top))
bounds.extend(Point(right, bottom))
ax.set_xlim(bounds.left, bounds.right)
ax.set_ylim(bounds.bottom, bounds.top)
if drawNodes:
nl = self.asNodelist()
for i in range(0, len(nl)):
n = nl[i]
if n.type == "offcurve":
circle = plt.Circle(
(n.x, n.y), 2, fill=True, color="black", alpha=0.5
)
ax.add_artist(circle)
if i + 1 < len(nl) and nl[i + 1].type != "offcurve":
l = Line2D(
[n.x, nl[i + 1].x],
[n.y, nl[i + 1].y],
linewidth=2,
color="black",
alpha=0.3,
)
ax.add_artist(l)
if i - 0 >= 0 and nl[i - 1].type != "offcurve":
l = Line2D(
[n.x, nl[i - 1].x],
[n.y, nl[i - 1].y],
linewidth=2,
color="black",
alpha=0.3,
)
ax.add_artist(l)
else:
circle = plt.Circle((n.x, n.y), 3, color="black", alpha=0.3)
ax.add_artist(circle)
def clone(self) -> "BezierPath":
"""Return a new path which is an exact copy of this one"""
p = BezierPath.fromSegments(self.asSegments())
p.closed = self.closed
return p
def round(self) -> None:
"""Rounds the points of this path to integer coordinates."""
segs = self.asSegments()
for s in segs:
s.round()
self.activeRepresentation = SegmentRepresentation(self, segs)
def bounds(self) -> BoundingBox:
"""Determine the bounding box of the path, returned as a
`BoundingBox` object."""
bbox = BoundingBox()
for seg in self.asSegments():
bbox.extend(seg)
return bbox
def splitAtPoints(self, splitlist: List[Tuple[Segment, float]]):
"""Split the path at the given points. The splitlist is a list of
tuples, each containing a segment and a time (0->1) along that
segment. For instance, to split a path at the midpoint of the first
segment, you would do::
path.splitAtPoints([(path.asSegments()[0], 0.5)])
"""
def mapx(v, ds):
return (v - ds) / (1 - ds)
segs = self.asSegments()
newsegs = []
# Cluster splitlist by seg
newsplitlist = {}
for seg, t in splitlist:
if seg not in newsplitlist:
newsplitlist[seg] = []
newsplitlist[seg].append(t)
for k in newsplitlist:
newsplitlist[k] = sorted(newsplitlist[k])
# Now walk the path
for seg in segs:
if seg in newsplitlist:
tList = newsplitlist[seg]
while len(tList) > 0:
t = tList.pop(0)
if t < 1e-8:
continue
seg1, seg2 = seg.splitAtTime(t)
newsegs.append(seg1)
seg = seg2
for i in range(0, len(tList)):
tList[i] = mapx(tList[i], t)
newsegs.append(seg)
self.activeRepresentation = SegmentRepresentation(self, newsegs)
def addExtremes(self) -> "BezierPath":
"""Add extreme points to the path."""
segs = self.asSegments()
splitlist = []
for seg in segs:
for t in seg.findExtremes():
splitlist.append((seg, t))
self.splitAtPoints(splitlist)
return self
@property
def length(self) -> float:
"""Returns the length of the whole path."""
segs = self.asSegments()
length = 0
for s in segs:
length += s.length
return length
def pointAtTime(self, t: float) -> Point:
"""Returns the point at time t (0->1) along the curve, where 1 is the end of the whole curve."""
segs = self.asSegments()
if t == 1.0:
return segs[-1].pointAtTime(1)
t *= len(segs)
seg = segs[int(math.floor(t))]
return seg.pointAtTime(t - math.floor(t))
def lengthAtTime(self, t: float) -> float:
"""Returns the length of the subset of the path from the start
up to the point t (0->1), where 1 is the end of the whole curve."""
segs = self.asSegments()
t *= len(segs)
length = 0
for s in segs[: int(math.floor(t))]:
length += s.length
seg = segs[int(math.floor(t))]
s1, s2 = seg.splitAtTime(t - math.floor(t))
length += s1.length
return length
def offset(self, vector: Point, rotateVector=True) -> "BezierPath":
"""Returns a new BezierPath which approximates offsetting the
current Bezier path by the given vector. Note that the vector
will be rotated around the normal of the curve so that the
offsetting always happens on the same 'side' of the curve:
.. figure:: offset1.png
:scale: 75 %
:alt: offset1
If you don't want that and you want 'straight' offsetting instead
(which may intersect with the original curve), pass
`rotateVector=False`:
.. figure:: offset2.png
:scale: 75 %
:alt: offset1
"""
# Method 1 - curve fit
newsegs = []
points = []
def finishPoints(newsegs, points):
if len(points) > 0:
bp = BezierPath.fromPoints(points, error=0.1, cornerTolerance=1)
newsegs.extend(bp.asSegments())
while len(points) > 0:
points.pop()
for seg in self.asSegments():
if isinstance(seg, Line):
finishPoints(newsegs, points)
newsegs.append(seg.translated(vector))
else:
t = 0.0
while t < 1.0:
if rotateVector:
points.append(
seg.pointAtTime(t)
+ vector.rotated(Point(0, 0), seg.normalAtTime(t).angle)
)
else:
points.append(seg.pointAtTime(t) + vector)
step = max(abs(seg.curvatureAtTime(t)), 0.1)
t = t + min(seg.length / step, 0.1)
finishPoints(newsegs, points)
newpath = BezierPath()
newpath.activeRepresentation = SegmentRepresentation(newpath, newsegs)
return newpath
def append(self, other: "BezierPath", joinType="line") -> "BezierPath":
"""Append another path to this one. If the end point of the first
path is not the same as the start point of the other path, a line
will be drawn between them."""
segs1 = self.asSegments()
segs2 = other.asSegments()
if len(segs1) < 1:
self.activeRepresentation = SegmentRepresentation(self, segs2)
return
if len(segs2) < 1:
self.activeRepresentation = SegmentRepresentation(self, segs1)
return
# Which way around should they go?
dist1 = segs1[-1].end.distanceFrom(segs2[0].start)
dist2 = segs1[-1].end.distanceFrom(segs2[-1].end)
if dist2 > 2 * dist1:
segs2 = list(reversed([x.reversed() for x in segs2]))
# Add a line between if they don't match up
if segs1[-1].end != segs2[0].start:
segs1.append(Line(segs1[-1].end, segs2[0].start))
# XXX Check for discontinuities and harmonize if needed
segs1.extend(segs2)
self.activeRepresentation = SegmentRepresentation(self, segs1)
return self
def reverse(self) -> "BezierPath":
"""Reverse this path (mutates path)."""
seg2 = [x.reversed() for x in self.asSegments()]
self.activeRepresentation = SegmentRepresentation(self, list(reversed(seg2)))
return self
def translate(self, vector: Point) -> "BezierPath":
"""Translates the path by a given vector."""
seg2 = [x.translated(vector) for x in self.asSegments()]
self.activeRepresentation = SegmentRepresentation(self, seg2)
return self
def rotate(self, about: Point, angle: float) -> "BezierPath":
"""Rotate the path by a given vector."""
seg2 = [x.rotated(about, angle) for x in self.asSegments()]
self.activeRepresentation = SegmentRepresentation(self, seg2)
return self
def scale(self, by: float) -> "BezierPath":
"""Scales the path by a given magnitude."""
seg2 = [x.scaled(by) for x in self.asSegments()]
self.activeRepresentation = SegmentRepresentation(self, seg2)
return self
def balance(self) -> None:
"""Performs Tunni balancing on the path."""
segs = self.asSegments()
for x in segs:
if isinstance(x, CubicBezier):
x.balance()
self.activeRepresentation = SegmentRepresentation(self, segs)
return self
def findDiscontinuities(self):
"""Not implemented yet"""
raise NotImplementedError
def roundCorners(self):
"""Not implemented yet"""
raise NotImplementedError
def dash(self, lineLength=50, gapLength=None) -> List["BezierPath"]:
"""Returns a list of BezierPath objects created by chopping
this path into a dashed line::
paths = path.dash(lineLength = 20, gapLength = 50)
.. figure:: dash.png
:scale: 75 %
:alt: path.dash(lineLength = 20, gapLength = 50)
"""
if not gapLength:
gapLength = lineLength
granularity = self.length
newpaths = []
points = []
for t in self.regularSampleTValue(granularity):
lenSoFar = self.lengthAtTime(t) # Super inefficient. But simple!
lenSoFar = lenSoFar % (lineLength + gapLength)
if lenSoFar >= lineLength and len(points) > 0:
# When all you have is a hammer...
bp = BezierPath.fromPoints(points, error=1, cornerTolerance=1)
points = []
if len(bp.asSegments()) > 0:
newpaths.append(bp)
elif lenSoFar <= lineLength:
points.append(self.pointAtTime(t))
return newpaths
def segpairs(self) -> Iterator[Tuple[Segment, Segment]]:
"""Returns an iterator of pairs of segments."""
segs = self.asSegments()
for i in range(0, len(segs) - 1):
yield (segs[i], segs[i + 1])
def harmonize(self, seg1, seg2):
if seg1.end.x != seg2.start.x or seg1.end.y != seg2.start.y:
return
a1, a2 = seg1[1], seg1[2]
b1, b2 = seg2[1], seg2[2]
intersections = Line(a1, a2).intersections(Line(b1, b2), limited=False)
if not intersections[0]:
return
p0 = a1.distanceFrom(a2) / a2.distanceFrom(intersections[0].point)
p1 = b1.distanceFrom(intersections[0].point) / b1.distanceFrom(b2)
r = math.sqrt(p0 * p1)
t = r / (r + 1)
newA3 = a2.lerp(b1, t)
fixup = seg2.start - newA3
seg1[2] += fixup
seg2[1] += fixup
def flatten(self, degree=8) -> "BezierPath":
"""Returns a Path made up of line segments that approximate the path."""
segs = []
for s in self.asSegments():
segs.extend(s.flatten(degree))
return BezierPath.fromSegments(segs)
def windingNumberOfPoint(self, pt: Point) -> int:
"""Returns the winding number of a point with respect to the path."""
bounds = self.bounds()
bounds.addMargin(10)
ray1 = Line(Point(bounds.left, pt.y), pt)
ray2 = Line(Point(bounds.right, pt.y), pt)
leftIntersections = {}
rightIntersections = {}
leftWinding = 0
rightWinding = 0
for s in self.asSegments():
for i in s.intersections(ray1):
# print("Found left intersection with %s: %s" % (ray1, i.point))
leftIntersections[i.point] = i
for i in s.intersections(ray2):
rightIntersections[i.point] = i
for i in leftIntersections.values():
# XXX tangents here are all positive? Really?
# print(i.seg1, i.t1, i.point)
tangent = s.tangentAtTime(i.t1)
# print("Tangent at left intersection %s is %f" % (i.point,tangent.y))
leftWinding += int(math.copysign(1, tangent.y))
for i in rightIntersections.values():
tangent = s.tangentAtTime(i.t1)
# print("Tangent at right intersection %s is %f" % (i.point,tangent.y))
rightWinding += int(math.copysign(1, tangent.y))
# print("Left winding: %i right winding: %i " % (leftWinding,rightWinding))
return max(abs(leftWinding), abs(rightWinding))
def pointIsInside(self, pt: Point) -> bool:
"""Returns true if the given point lies on the "inside" of the path,
assuming an 'even-odd' winding rule where self-intersections are considered
outside."""
li = self.windingNumberOfPoint(pt)
return li % 2 == 1
@property
def signed_area(self) -> float:
"""Approximates the area under a closed path by flattening and treating as a polygon.
Returns the signed area; positive means the path is counter-clockwise,
negative means it is clockwise."""
flat = self.flatten()
area = 0
for s in flat.asSegments():
area = area + (s.start.x * s.end.y) - (s.start.y * s.end.x)
area = area / 2.0
return area
@property
def area(self) -> float:
"""Approximates the area under a closed path by flattening and treating as a
polygon. Returns the unsigned area. Use :py:meth:`signed_area` if you want
the signed area."""
return abs(self.signed_area)
@property
def direction(self) -> int:
"""Returns the direction of the path: -1 for clockwise and 1 for counterclockwise."""
return math.copysign(1, self.signed_area)
@property
def centroid(self) -> Optional[Point]:
"""Returns the centroid of the path's bounding box, or
None if the path is open.
"""
if not self.closed:
return None
return self.bounds().centroid # Really?
def drawWithBrush(self, other: "BezierPath") -> List["BezierPath"]:
"""Assuming that `other` is a closed Bezier path representing a pen or
brush of a certain shape and that `self` is an open path, this method
traces the brush along the path, returning an array of Bezier paths.
`other` may also be a function which, given a time `t` (0-1), returns a closed
path representing the shape of the brush at the given time.
This requires the `shapely` library to be installed.
"""
from shapely.geometry import Polygon
from shapely.ops import unary_union
polys = []
samples = self.sample(self.length / 2)
def constantBrush(t):
return other
brush = other
if not callable(brush):
brush = constantBrush
c = brush(0).centroid
from itertools import tee
def pairwise(iterable):
"s -> (s0,s1), (s1,s2), (s2, s3), ..."
a, b = tee(iterable)
next(b, None)
return zip(a, b)
t = 0
for n in samples:
brushHere = brush(t).clone().flatten()
brushHere.translate(n - brushHere.centroid)
polys.append(Polygon([(x[0].x, x[0].y) for x in brushHere.asSegments()]))
t = t + 1.0 / len(samples)
concave_hull = unary_union(polys)
ll = []
for x, y in pairwise(concave_hull.exterior.coords):
l = Line(Point(x[0], x[1]), Point(y[0], y[1]))
ll.append(l)
paths = [BezierPath.fromSegments(ll)]
for interior in concave_hull.interiors:
ll = []
for x, y in pairwise(interior.coords):
l = Line(Point(x[0], x[1]), Point(y[0], y[1]))
ll.append(l)
paths.append(BezierPath.fromSegments(ll))
return paths
def quadraticsToCubics(self) -> None:
"""Converts all quadratic segments in the path to cubic Beziers."""
segs = self.asSegments()
for i, s in enumerate(segs):
if len(s) == 3:
segs[i] = s.toCubicBezier()
return self
def thicknessAtX(path, x: float) -> Optional[float]:
"""Returns the thickness of the path at x-coordinate ``x``."""
bounds = path.bounds()
bounds.addMargin(10)
ray = Line(Point(x - 0.1, bounds.bottom), Point(x + 0.1, bounds.top))
intersections = []
for seg in path.asSegments():
intersections.extend(seg.intersections(ray))
if len(intersections) < 2:
return None
intersections = list(sorted(intersections, key=lambda i: i.point.y))
i1, i2 = intersections[0:2]
inorm1 = i1.seg1.normalAtTime(i1.t1)
ray1 = Line(i1.point + (inorm1 * 1000), i1.point + (inorm1 * -1000))
iii = i2.seg1.intersections(ray1)
if iii:
ll1 = i1.point.distanceFrom(iii[0].point)
else:
# Simple, vertical version
return abs(i1.point.y - i2.point.y)
inorm2 = i2.seg1.normalAtTime(i2.t1)
ray2 = Line(i2.point + (inorm2 * 1000), i2.point + (inorm2 * -1000))
iii = i1.seg1.intersections(ray2)
if iii:
ll2 = i2.point.distanceFrom(iii[0].point)
return (ll1 + ll2) * 0.5
else:
return ll1
# midpoint = (i1.point + i2.point) / 2
# # Find closest path to midpoint
# # Find the tangent at that time
# inorm2 = i2.seg1.normalAtTime(i2.t1)
def distanceToPath(self, other: "BezierPath", samples=10) -> float:
"""Finds the distance to the other curve at its closest point,
along with the t values for the closest point at each segment
and the relevant segments.
Returns: ``distance, t1, t2, seg1, seg2``."""
from beziers.utils.curvedistance import curveDistance
segs1 = self.asSegments()
segs2 = other.asSegments()
minDistance = None
# Find closest segment pair.
for s1 in segs1:
samples1 = s1.sample(samples)
for s2 in segs2:
samples2 = s2.sample(samples)
d = min(
[p1.squareDistanceFrom(p2) for p1 in samples1 for p2 in samples2]
)
if not minDistance or d < minDistance:
minDistance = d
closestPair = (s1, s2)
c = curveDistance(closestPair[0], closestPair[1])
return (c[0], c[1], c[2], closestPair[0], closestPair[1])
def tidy(self, **kwargs) -> None:
"""Tidies a curve by adding extremes, and then running
``removeIrrelevantSegments`` and ``smooth``. ``relLength``,
``absLength``, ``maxCollectionSize``, ``lengthLimit`` and
``cornerTolerance`` parameters are passed to the relevant routine."""
self.addExtremes()
self.removeIrrelevantSegments(
**{k: v for k, v in kwargs.items() if k in ["relLength", "absLength"]}
)
self.smooth(
**{
k: v
for k, v in kwargs.items()
if k in ["maxCollectionSize", "lengthLimit", "cornerTolerance"]
}
)
def removeIrrelevantSegments(self, relLength=1 / 50000, absLength=0):
"""Removes small and collinear line segments. Collinear line
segments are adjacent line segments which are heading in the same
direction, and hence can be collapsed into a single segment.
Small segments (those less than ``absLength`` units, or less than
``relLength`` as a fraction of the path's total length) are
removed entirely."""
segs = self.asSegments()
newsegs = [segs[0]]
smallLength = self.length * relLength
for i in range(1, len(segs)):
prev = newsegs[-1]
this = segs[i]
if this.length < smallLength or this.length < absLength:
this[0] = prev[0]
newsegs[-1] = this
continue
if len(prev) == 2 and len(this) == 2:
if math.isclose(
prev.tangentAtTime(0).angle, this.tangentAtTime(0).angle
):
this[0] = prev[0]
newsegs[-1] = this
continue
newsegs.append(this)
self.activeRepresentation = SegmentRepresentation(self, newsegs)
return self
def smooth(self, maxCollectionSize=30, lengthLimit=20, cornerTolerance=10):
"""Smooths a curve, by collating lists of small (at most ``lengthLimit``
units long) segments at most ``maxCollectionSize`` segments at a time,
and running them through a curve fitting algorithm. The list collation
also stops when one segment turns more than ``cornerTolerance`` degrees
away from the previous one, so that corners are not smoothed."""
smallLineLength = lengthLimit
segs = self.asSegments()
i = 0
collection = []
while i < len(segs):
s = segs[i]
if s.length < smallLineLength and len(collection) <= maxCollectionSize:
collection.append(s)
else:
corner = False
if len(collection) > 1:
last = collection[-1]
if abs(
last.tangentAtTime(1).angle - s.tangentAtTime(0).angle
) > math.radians(cornerTolerance):
corner = True
if len(collection) > maxCollectionSize or corner or i == len(segs) - 2:
points = [x.start for x in collection]
bp = BezierPath.fromPoints(points)
if len(bp.asSegments()) > 0:
segs[i - len(collection) : i] = bp.asSegments()
i -= len(collection)
collection = []
i += 1
if len(collection) > 0:
points = [x.start for x in collection]
bp = BezierPath.fromPoints(points)
if len(bp.asSegments()) > 0:
segs[i - (1 + len(collection)) : i - 1] = bp.asSegments()
self.activeRepresentation = SegmentRepresentation(self, segs)
return self
|