1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
from beziers.line import Line
from beziers.point import Point
from beziers.segment import Segment
from beziers.utils import quadraticRoots
from beziers.utils.arclengthmixin import ArcLengthMixin
my_epsilon = 2e-7
class QuadraticBezier(ArcLengthMixin, Segment):
def __init__(self, start, c1, end):
self.points = [start, c1, end]
self._range = [0, 1]
def __repr__(self):
return "B<%s-%s-%s>" % (self[0], self[1], self[2])
@classmethod
def fromRepr(klass, text):
import re
p = re.compile("^B<(<.*?>)-(<.*?>)-(<.*?>)>$")
m = p.match(text)
points = [Point.fromRepr(m.group(t)) for t in range(1, 4)]
return klass(*points)
def pointAtTime(self, t):
"""Returns the point at time t (0->1) along the curve."""
x = (
(1 - t) * (1 - t) * self[0].x
+ 2 * (1 - t) * t * self[1].x
+ t * t * self[2].x
)
y = (
(1 - t) * (1 - t) * self[0].y
+ 2 * (1 - t) * t * self[1].y
+ t * t * self[2].y
)
return Point(x, y)
def tOfPoint(self, p):
"""Returns the time t (0->1) of a point on the curve."""
xroots = quadraticRoots(
self[0].x - 2 * self[1].x + self[2].x,
2 * (self[1].x - self[0].x),
self[0].x - p.x,
)
yroots = quadraticRoots(
self[0].y - 2 * self[1].y + self[2].y,
2 * (self[1].y - self[0].y),
self[0].y - p.y,
)
if not len(xroots) or not len(yroots):
return -1
for x in xroots:
for y in yroots:
if -my_epsilon < x - y < my_epsilon:
return x
return -1
def splitAtTime(self, t):
"""Returns two segments, dividing the given segment at a point t (0->1) along the curve."""
p4 = self[0].lerp(self[1], t)
p5 = self[1].lerp(self[2], t)
p7 = p4.lerp(p5, t)
return (QuadraticBezier(self[0], p4, p7), QuadraticBezier(p7, p5, self[2]))
def derivative(self):
"""Returns a `Line` representing the derivative of this curve."""
return Line((self[1] - self[0]) * 2, (self[2] - self[1]) * 2)
def flatten(self, degree=8):
ss = []
if self.length < degree:
return [Line(self[0], self[2])]
samples = self.sample(self.length / degree)
for i in range(1, len(samples)):
l = Line(samples[i - 1], samples[i])
l._orig = self
ss.append(l)
return ss
def _findRoots(self, dimension):
if dimension == "x":
return quadraticRoots(
self[0].x - 2 * self[1].x + self[2].x,
2 * (self[1].x - self[0].x),
self[0].x,
)
elif dimension == "y":
return quadraticRoots(
self[0].y - 2 * self[1].y + self[2].y,
2 * (self[1].y - self[0].y),
self[0].y,
)
else:
raise "Meh"
def _findDRoots(self):
d1 = self[0].x - 2 * self[1].x + self[2].x
d2 = self[0].y - 2 * self[1].y + self[2].y
roots = []
if d1 != 0:
r1 = (self[0].x - self[1].x) / d1
roots.append(r1)
if d2 != 0:
r2 = (self[0].y - self[1].y) / d2
roots.append(r2)
return [r for r in roots if r >= 0.01 and r <= 0.99]
def findExtremes(self):
"""Returns a list of time `t` values for extremes of the curve."""
return self._findDRoots()
@property
def area(self):
"""Returns the signed area between the curve and the y-axis"""
return (
2
* (
self[1].x * self[0].y
- self[0].x * self[1].y
- self[1].x * self[2].y
+ self[2].x * self[1].y
)
+ 3 * (self[2].x * self[2].y - self[0].x * self[0].y)
+ self[2].x * self[0].y
- self[0].x * self[2].y
) / 6.0
def toCubicBezier(self):
"""Converts the quadratic bezier to a CubicBezier"""
from beziers.cubicbezier import CubicBezier
return CubicBezier(
self[0],
self[0] * (1 / 3.0) + self[1] * (2 / 3.0),
self[1] * (2 / 3.0) + self[2] * (1 / 3.0),
self[2],
)
|