File: checks.py

package info (click to toggle)
python-bioframe 0.4.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,000 kB
  • sloc: python: 5,860; makefile: 38; sh: 13
file content (485 lines) | stat: -rw-r--r-- 13,415 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
import pandas as pd
import numpy as np
from . import construction
from .specs import _get_default_colnames, _verify_columns, _verify_column_dtypes
from .. import ops

__all__ = [
    "is_bedframe",
    "is_cataloged",
    "is_overlapping",
    "is_viewframe",
    "is_contained",
    "is_covering",
    "is_tiling",
    "is_sorted",
]


def is_bedframe(
    df,
    raise_errors=False,
    cols=None,
):
    """
    Checks that required bedframe properties are satisfied for dataframe `df`.

    This includes:

    - chrom, start, end columns
    - columns have valid dtypes (object/string/categorical, int/pd.Int64Dtype, int/pd.Int64Dtype)
    - for each interval, if any of chrom, start, end are null, then all are null
    - all starts < ends.

    Parameters
    ----------
    df : pandas.DataFrame

    raise_errors : bool
        If True, raises errors instead of returning a boolean False for invalid properties.
        Default False.

    cols : (str, str, str) or None
        The names of columns containing the chromosome, start and end of the
        genomic intervals, provided separately for each set. The default
        values are 'chrom', 'start', 'end'.

    Returns
    -------
    is_bedframe:bool

    """
    ck1, sk1, ek1 = _get_default_colnames() if cols is None else cols

    if not _verify_columns(df, [ck1, sk1, ek1], return_as_bool=True):
        if raise_errors:
            raise TypeError("Invalid bedFrame: Invalid column names")
        return False

    if not _verify_column_dtypes(df, cols=[ck1, sk1, ek1], return_as_bool=True):
        if raise_errors:
            raise TypeError("Invalid bedFrame: Invalid column dtypes")
        return False

    nan_intervals = pd.isnull(df[[ck1, sk1, ek1]])
    if (~(~nan_intervals.any(axis=1) | nan_intervals.all(axis=1))).any():
        if raise_errors:
            raise ValueError(
                "Invalid bedFrame: Invalid null values (if any of chrom, start, end are null, then each must be null)"
            )
        return False

    if ((df[ek1] - df[sk1]) < 0).any():
        if raise_errors:
            raise ValueError(
                "Invalid bedFrame: starts exceed ends for "
                + str(np.sum(((df[ek1] - df[sk1]) < 0)))
                + " intervals"
            )
        return False

    return True


def is_cataloged(
    df, view_df, raise_errors=False, df_view_col="view_region", view_name_col="name"
):
    """
    Tests if all region names in `df[df_view_col]` are present in `view_df[view_name_col]`.

    Parameters
    ----------
    df : pandas.DataFrame

    view_df : pandas.DataFrame

    raise_errors : bool
        If True, raises errors instead of returning a boolean False for invalid properties.
        Default False.

    df_view_col: str
        Name of column from df that indicates region in view.

    view_name_col: str
        Name of column from view that specifies  region name.

    Returns
    -------
    is_cataloged:bool

    Notes
    -----
    Does not check if names in `view_df[view_name_col]` are unique.

    """
    if not _verify_columns(df, [df_view_col], return_as_bool=True):
        if raise_errors is True:
            raise ValueError(f"Could not find ‘{df_view_col}’ column in df")
        return False

    if not _verify_columns(view_df, [view_name_col], return_as_bool=True):
        if raise_errors is True:
            raise ValueError(f"Could not find ‘{view_name_col}’ column in view_df")
        return False

    if not set(df[df_view_col].copy().dropna().values).issubset(
        set(view_df[view_name_col].values)
    ):
        if raise_errors is True:
            raise ValueError(
                "The following regions in df[df_view_col] not in view_df[view_name_col]: \n"
                + "{}".format(
                    set(df[df_view_col].values).difference(
                        set(view_df[view_name_col].values)
                    )
                )
            )
        return False

    return True


def is_overlapping(df, cols=None):
    """
    Tests if any genomic intervals in a bioframe `df` overlap.

    Also see :func:`bioframe.ops.merge()`.

    Parameters
    ----------
    df : pandas.DataFrame

    cols : (str, str, str) or None
        The names of columns containing the chromosome, start and end of the
        genomic intervals, provided separately for each set. The default
        values are 'chrom', 'start', 'end'.

    Returns
    -------
    is_overlapping:bool

    """
    from ..ops import merge

    ck1, sk1, ek1 = _get_default_colnames() if cols is None else cols

    df_merged = merge(df, cols=cols)

    total_interval_len = np.sum((df[ek1] - df[sk1]).values)
    total_interval_len_merged = np.sum((df_merged[ek1] - df_merged[sk1]).values)

    if total_interval_len > total_interval_len_merged:
        return True
    else:
        return False


def is_viewframe(region_df, raise_errors=False, view_name_col="name", cols=None):
    """
    Checks that `region_df` is a valid viewFrame.

    This includes:

    - it satisfies requirements for a bedframe, including columns for ('chrom', 'start', 'end')
    - it has an additional column, view_name_col, with default 'name'
    - it does not contain null values
    - entries in the view_name_col are unique.
    - intervals are non-overlapping

    Parameters
    ----------

    region_df : pandas.DataFrame
        Dataframe of genomic intervals to be tested.

    raise_errors : bool
        If True, raises errors instead of returning a boolean False for invalid properties.
        Default False.

    view_name_col : str
        Specifies column name of the view regions. Default 'name'.

    cols : (str, str, str) or None
        The names of columns containing the chromosome, start and end of the
        genomic intervals, provided separately for each set. The default
        values are 'chrom', 'start', 'end'.

    Returns
    -------
    is_viewframe:bool

    """

    ck1, sk1, ek1 = _get_default_colnames() if cols is None else cols

    if not _verify_columns(
        region_df, [ck1, sk1, ek1, view_name_col], return_as_bool=True
    ):
        if raise_errors:
            raise TypeError("Invalid view: invalid column names")
        return False

    if not is_bedframe(region_df, cols=cols):
        if raise_errors:
            raise ValueError("Invalid view: not a bedframe")
        return False

    if pd.isna(region_df).values.any():
        if raise_errors:
            raise ValueError("Invalid view: cannot contain NAs")
        return False

    if len(set(region_df[view_name_col])) < len(region_df[view_name_col].values):
        if raise_errors:
            raise ValueError(
                "Invalid view: entries in region_df[view_name_col] must be unique"
            )
        return False

    if is_overlapping(region_df, cols=cols):
        if raise_errors:
            raise ValueError("Invalid view: entries must be non-overlapping")
        return False

    return True


def is_contained(
    df,
    view_df,
    raise_errors=False,
    df_view_col=None,
    view_name_col="name",
    cols=None,
):
    """
    Tests if all genomic intervals in a bioframe `df` are cataloged and do not extend beyond their
    associated region in the view `view_df`.

    Parameters
    ----------
    df : pandas.DataFrame

    view_df : pandas.DataFrame
        Valid viewframe.

    raise_errors : bool
        If True, raises errors instead of returning a boolean False for invalid properties.
        Default False.

    df_view_col:
        Column from df used to associate interviews with view regions.
        Default `view_region`.

    cols: (str, str, str)
        Column names for chrom, start, end in df.

    Returns
    -------
    is_contained:bool

    """
    from ..ops import trim

    ck1, sk1, ek1 = _get_default_colnames() if cols is None else cols

    if df_view_col is None:
        try:
            df_view_assigned = ops.overlap(df, view_df)
            assert (df_view_assigned["end_"].isna()).sum() == 0
            assert (df_view_assigned["start_"].isna()).sum() == 0
            assert (df_view_assigned["end"] <= df_view_assigned["end_"]).all()
            assert (df_view_assigned["start"] >= df_view_assigned["start_"]).all()
        except AssertionError:
            if raise_errors:
                raise AssertionError("df not contained in view_df")
            else:
                return False
        return True

    if not is_cataloged(
        df, view_df, df_view_col=df_view_col, view_name_col=view_name_col
    ):
        if raise_errors:
            raise ValueError("df not cataloged in view_df")
        return False

    df_trim = trim(
        df, view_df=view_df, df_view_col=df_view_col, view_name_col=view_name_col
    )
    is_start_trimmed = np.any(df[sk1].values != df_trim[sk1].values)
    is_end_trimmed = np.any(df[ek1].values != df_trim[ek1].values)

    if is_start_trimmed or is_end_trimmed:
        if raise_errors:
            raise ValueError("df not contained in view_df")
        return False
    else:
        return True


def is_covering(df, view_df, view_name_col="name", cols=None):
    """
    Tests if a view `view_df` is covered by the set of genomic intervals in the bedframe `df`.

    This test is true if ``complement(df,view_df)`` is empty. Also note this test ignores regions assigned to
    intervals in `df` since regions are re-assigned in :func:`bioframe.ops.complement`.

    Parameters
    ----------
    df : pandas.DataFrame

    view_df : pandas.DataFrame
        Valid viewFrame.

    view_name_col:
        Column from view_df with view region names. Default `name`.

    cols : (str, str, str) or None
        The names of columns containing the chromosome, start and end of the
        genomic intervals, provided separately for each set. The default
        values are 'chrom', 'start', 'end'.

    Returns
    -------
    is_covering:bool

    """
    from ..ops import complement

    if complement(
        df,
        view_df=view_df,
        view_name_col=view_name_col,
        cols=cols,
    ).empty:
        return True
    else:
        return False


def is_tiling(
    df,
    view_df,
    raise_errors=False,
    df_view_col="view_region",
    view_name_col="name",
    cols=None,
):
    """
    Tests if a view `view_df` is tiled by the set of genomic intervals in the bedframe `df`.

    This is true if:

    - df is not overlapping
    - df is covering view_df
    - df is contained in view_df

    Parameters
    ----------
    df : pandas.DataFrame

    view_df : pandas.DataFrame
        valid viewFrame

    raise_errors : bool
        If True, raises errors instead of returning a boolean False for invalid properties.
        Default False.

    df_view_col: str
        Name of column from df that indicates region in view.

    view_name_col: str
        Name of column from view that specifies unique region name.

    cols : (str, str, str) or None
        The names of columns containing the chromosome, start and end of the
        genomic intervals, provided separately for each set. The default
        values are 'chrom', 'start', 'end'.

    Returns
    -------
    is_tiling:bool

    """

    view_df = construction.make_viewframe(
        view_df, view_name_col=view_name_col, cols=cols
    )

    if is_overlapping(df):
        if raise_errors:
            raise ValueError("overlaps")
        return False
    if not is_covering(df, view_df, view_name_col=view_name_col, cols=None):
        if raise_errors:
            raise ValueError("not covered")
        return False
    if not is_contained(
        df, view_df, df_view_col=df_view_col, view_name_col=view_name_col, cols=None
    ):
        if raise_errors:
            raise ValueError("not contained")
        return False
    return True


def is_sorted(
    df,
    view_df=None,
    reset_index=True,
    df_view_col=None,
    view_name_col="name",
    cols=None,
):
    """
    Tests if a bedframe is changed by sorting.

    Also see :func:`bioframe.ops.sort_bedframe`.

    Parameters
    ----------
    df : pandas.DataFrame

    view_df : pandas.DataFrame | dict-like
        Optional view to pass to ``sort_bedframe``.
        When it is dict-like :func:'bioframe.make_viewframe' will
        be used to convert to viewframe. If view_df is not provided
        df is assumed to be sorted by chrom and start.

    reset_index : bool
        Optional argument to pass to ``sort_bedframe``.

    df_view_col: None | str
        Name of column from df that indicates region in view.
        If None, :func:'bioframe.assign_view' will be used to assign view regions.
        Default None.

    view_name_col: str
        Name of column from view that specifies unique region name.

    cols : (str, str, str) or None
        The names of columns containing the chromosome, start and end of the
        genomic intervals, provided separately for each set. The default
        values are 'chrom', 'start', 'end'.

    Returns
    -------
    is_sorted : bool

    """
    from ..ops import sort_bedframe

    df_sorted = sort_bedframe(
        df.copy(),
        view_df=view_df,
        reset_index=reset_index,
        df_view_col=df_view_col,
        view_name_col=view_name_col,
        cols=cols,
    )

    if df.equals(df_sorted):
        return True
    else:
        return False