1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
|
import pandas as pd
import numpy as np
from . import construction
from .specs import _get_default_colnames, _verify_columns, _verify_column_dtypes
from .. import ops
__all__ = [
"is_bedframe",
"is_cataloged",
"is_overlapping",
"is_viewframe",
"is_contained",
"is_covering",
"is_tiling",
"is_sorted",
]
def is_bedframe(
df,
raise_errors=False,
cols=None,
):
"""
Checks that required bedframe properties are satisfied for dataframe `df`.
This includes:
- chrom, start, end columns
- columns have valid dtypes (object/string/categorical, int/pd.Int64Dtype, int/pd.Int64Dtype)
- for each interval, if any of chrom, start, end are null, then all are null
- all starts < ends.
Parameters
----------
df : pandas.DataFrame
raise_errors : bool
If True, raises errors instead of returning a boolean False for invalid properties.
Default False.
cols : (str, str, str) or None
The names of columns containing the chromosome, start and end of the
genomic intervals, provided separately for each set. The default
values are 'chrom', 'start', 'end'.
Returns
-------
is_bedframe:bool
"""
ck1, sk1, ek1 = _get_default_colnames() if cols is None else cols
if not _verify_columns(df, [ck1, sk1, ek1], return_as_bool=True):
if raise_errors:
raise TypeError("Invalid bedFrame: Invalid column names")
return False
if not _verify_column_dtypes(df, cols=[ck1, sk1, ek1], return_as_bool=True):
if raise_errors:
raise TypeError("Invalid bedFrame: Invalid column dtypes")
return False
nan_intervals = pd.isnull(df[[ck1, sk1, ek1]])
if (~(~nan_intervals.any(axis=1) | nan_intervals.all(axis=1))).any():
if raise_errors:
raise ValueError(
"Invalid bedFrame: Invalid null values (if any of chrom, start, end are null, then each must be null)"
)
return False
if ((df[ek1] - df[sk1]) < 0).any():
if raise_errors:
raise ValueError(
"Invalid bedFrame: starts exceed ends for "
+ str(np.sum(((df[ek1] - df[sk1]) < 0)))
+ " intervals"
)
return False
return True
def is_cataloged(
df, view_df, raise_errors=False, df_view_col="view_region", view_name_col="name"
):
"""
Tests if all region names in `df[df_view_col]` are present in `view_df[view_name_col]`.
Parameters
----------
df : pandas.DataFrame
view_df : pandas.DataFrame
raise_errors : bool
If True, raises errors instead of returning a boolean False for invalid properties.
Default False.
df_view_col: str
Name of column from df that indicates region in view.
view_name_col: str
Name of column from view that specifies region name.
Returns
-------
is_cataloged:bool
Notes
-----
Does not check if names in `view_df[view_name_col]` are unique.
"""
if not _verify_columns(df, [df_view_col], return_as_bool=True):
if raise_errors is True:
raise ValueError(f"Could not find ‘{df_view_col}’ column in df")
return False
if not _verify_columns(view_df, [view_name_col], return_as_bool=True):
if raise_errors is True:
raise ValueError(f"Could not find ‘{view_name_col}’ column in view_df")
return False
if not set(df[df_view_col].copy().dropna().values).issubset(
set(view_df[view_name_col].values)
):
if raise_errors is True:
raise ValueError(
"The following regions in df[df_view_col] not in view_df[view_name_col]: \n"
+ "{}".format(
set(df[df_view_col].values).difference(
set(view_df[view_name_col].values)
)
)
)
return False
return True
def is_overlapping(df, cols=None):
"""
Tests if any genomic intervals in a bioframe `df` overlap.
Also see :func:`bioframe.ops.merge()`.
Parameters
----------
df : pandas.DataFrame
cols : (str, str, str) or None
The names of columns containing the chromosome, start and end of the
genomic intervals, provided separately for each set. The default
values are 'chrom', 'start', 'end'.
Returns
-------
is_overlapping:bool
"""
from ..ops import merge
ck1, sk1, ek1 = _get_default_colnames() if cols is None else cols
df_merged = merge(df, cols=cols)
total_interval_len = np.sum((df[ek1] - df[sk1]).values)
total_interval_len_merged = np.sum((df_merged[ek1] - df_merged[sk1]).values)
if total_interval_len > total_interval_len_merged:
return True
else:
return False
def is_viewframe(region_df, raise_errors=False, view_name_col="name", cols=None):
"""
Checks that `region_df` is a valid viewFrame.
This includes:
- it satisfies requirements for a bedframe, including columns for ('chrom', 'start', 'end')
- it has an additional column, view_name_col, with default 'name'
- it does not contain null values
- entries in the view_name_col are unique.
- intervals are non-overlapping
Parameters
----------
region_df : pandas.DataFrame
Dataframe of genomic intervals to be tested.
raise_errors : bool
If True, raises errors instead of returning a boolean False for invalid properties.
Default False.
view_name_col : str
Specifies column name of the view regions. Default 'name'.
cols : (str, str, str) or None
The names of columns containing the chromosome, start and end of the
genomic intervals, provided separately for each set. The default
values are 'chrom', 'start', 'end'.
Returns
-------
is_viewframe:bool
"""
ck1, sk1, ek1 = _get_default_colnames() if cols is None else cols
if not _verify_columns(
region_df, [ck1, sk1, ek1, view_name_col], return_as_bool=True
):
if raise_errors:
raise TypeError("Invalid view: invalid column names")
return False
if not is_bedframe(region_df, cols=cols):
if raise_errors:
raise ValueError("Invalid view: not a bedframe")
return False
if pd.isna(region_df).values.any():
if raise_errors:
raise ValueError("Invalid view: cannot contain NAs")
return False
if len(set(region_df[view_name_col])) < len(region_df[view_name_col].values):
if raise_errors:
raise ValueError(
"Invalid view: entries in region_df[view_name_col] must be unique"
)
return False
if is_overlapping(region_df, cols=cols):
if raise_errors:
raise ValueError("Invalid view: entries must be non-overlapping")
return False
return True
def is_contained(
df,
view_df,
raise_errors=False,
df_view_col=None,
view_name_col="name",
cols=None,
):
"""
Tests if all genomic intervals in a bioframe `df` are cataloged and do not extend beyond their
associated region in the view `view_df`.
Parameters
----------
df : pandas.DataFrame
view_df : pandas.DataFrame
Valid viewframe.
raise_errors : bool
If True, raises errors instead of returning a boolean False for invalid properties.
Default False.
df_view_col:
Column from df used to associate interviews with view regions.
Default `view_region`.
cols: (str, str, str)
Column names for chrom, start, end in df.
Returns
-------
is_contained:bool
"""
from ..ops import trim
ck1, sk1, ek1 = _get_default_colnames() if cols is None else cols
if df_view_col is None:
try:
df_view_assigned = ops.overlap(df, view_df)
assert (df_view_assigned["end_"].isna()).sum() == 0
assert (df_view_assigned["start_"].isna()).sum() == 0
assert (df_view_assigned["end"] <= df_view_assigned["end_"]).all()
assert (df_view_assigned["start"] >= df_view_assigned["start_"]).all()
except AssertionError:
if raise_errors:
raise AssertionError("df not contained in view_df")
else:
return False
return True
if not is_cataloged(
df, view_df, df_view_col=df_view_col, view_name_col=view_name_col
):
if raise_errors:
raise ValueError("df not cataloged in view_df")
return False
df_trim = trim(
df, view_df=view_df, df_view_col=df_view_col, view_name_col=view_name_col
)
is_start_trimmed = np.any(df[sk1].values != df_trim[sk1].values)
is_end_trimmed = np.any(df[ek1].values != df_trim[ek1].values)
if is_start_trimmed or is_end_trimmed:
if raise_errors:
raise ValueError("df not contained in view_df")
return False
else:
return True
def is_covering(df, view_df, view_name_col="name", cols=None):
"""
Tests if a view `view_df` is covered by the set of genomic intervals in the bedframe `df`.
This test is true if ``complement(df,view_df)`` is empty. Also note this test ignores regions assigned to
intervals in `df` since regions are re-assigned in :func:`bioframe.ops.complement`.
Parameters
----------
df : pandas.DataFrame
view_df : pandas.DataFrame
Valid viewFrame.
view_name_col:
Column from view_df with view region names. Default `name`.
cols : (str, str, str) or None
The names of columns containing the chromosome, start and end of the
genomic intervals, provided separately for each set. The default
values are 'chrom', 'start', 'end'.
Returns
-------
is_covering:bool
"""
from ..ops import complement
if complement(
df,
view_df=view_df,
view_name_col=view_name_col,
cols=cols,
).empty:
return True
else:
return False
def is_tiling(
df,
view_df,
raise_errors=False,
df_view_col="view_region",
view_name_col="name",
cols=None,
):
"""
Tests if a view `view_df` is tiled by the set of genomic intervals in the bedframe `df`.
This is true if:
- df is not overlapping
- df is covering view_df
- df is contained in view_df
Parameters
----------
df : pandas.DataFrame
view_df : pandas.DataFrame
valid viewFrame
raise_errors : bool
If True, raises errors instead of returning a boolean False for invalid properties.
Default False.
df_view_col: str
Name of column from df that indicates region in view.
view_name_col: str
Name of column from view that specifies unique region name.
cols : (str, str, str) or None
The names of columns containing the chromosome, start and end of the
genomic intervals, provided separately for each set. The default
values are 'chrom', 'start', 'end'.
Returns
-------
is_tiling:bool
"""
view_df = construction.make_viewframe(
view_df, view_name_col=view_name_col, cols=cols
)
if is_overlapping(df):
if raise_errors:
raise ValueError("overlaps")
return False
if not is_covering(df, view_df, view_name_col=view_name_col, cols=None):
if raise_errors:
raise ValueError("not covered")
return False
if not is_contained(
df, view_df, df_view_col=df_view_col, view_name_col=view_name_col, cols=None
):
if raise_errors:
raise ValueError("not contained")
return False
return True
def is_sorted(
df,
view_df=None,
reset_index=True,
df_view_col=None,
view_name_col="name",
cols=None,
):
"""
Tests if a bedframe is changed by sorting.
Also see :func:`bioframe.ops.sort_bedframe`.
Parameters
----------
df : pandas.DataFrame
view_df : pandas.DataFrame | dict-like
Optional view to pass to ``sort_bedframe``.
When it is dict-like :func:'bioframe.make_viewframe' will
be used to convert to viewframe. If view_df is not provided
df is assumed to be sorted by chrom and start.
reset_index : bool
Optional argument to pass to ``sort_bedframe``.
df_view_col: None | str
Name of column from df that indicates region in view.
If None, :func:'bioframe.assign_view' will be used to assign view regions.
Default None.
view_name_col: str
Name of column from view that specifies unique region name.
cols : (str, str, str) or None
The names of columns containing the chromosome, start and end of the
genomic intervals, provided separately for each set. The default
values are 'chrom', 'start', 'end'.
Returns
-------
is_sorted : bool
"""
from ..ops import sort_bedframe
df_sorted = sort_bedframe(
df.copy(),
view_df=view_df,
reset_index=reset_index,
df_view_col=df_view_col,
view_name_col=view_name_col,
cols=cols,
)
if df.equals(df_sorted):
return True
else:
return False
|