File: ops.py

package info (click to toggle)
python-bioframe 0.4.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,000 kB
  • sloc: python: 5,860; makefile: 38; sh: 13
file content (1889 lines) | stat: -rw-r--r-- 61,811 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
import numpy as np
import pandas as pd

from .core.specs import _get_default_colnames, _verify_columns
from .core.stringops import parse_region

from .core import arrops
from .core import specs
from .core import construction
from .core import checks

__all__ = [
    "select",
    "select_mask",
    "select_indices",
    "select_labels",
    "expand",
    "overlap",
    "cluster",
    "merge",
    "coverage",
    "closest",
    "subtract",
    "setdiff",
    "count_overlaps",
    "trim",
    "complement",
    "sort_bedframe",
    "assign_view",
]


def select_mask(df, region, cols=None):
    """
    Return boolean mask for all genomic intervals that overlap a query range.

    Parameters
    ----------
    df : pandas.DataFrame

    region : str or tuple
        The genomic region to select from the dataframe in UCSC-style genomic
        region string, or triple (chrom, start, end).

    cols : (str, str, str) or None
        The names of columns containing the chromosome, start and end of the
        genomic intervals. The default values are 'chrom', 'start', 'end'.

    Returns
    -------
    Boolean array of shape (len(df),)
    """
    ck, sk, ek = _get_default_colnames() if cols is None else cols
    _verify_columns(df, [ck, sk, ek])

    chrom, start, end = parse_region(region)

    if chrom is None:
        raise ValueError("no chromosome detected, check region input")

    if start is None:
        mask = df[ck] == chrom
    else:
        if end is None:
            end = np.inf
        mask = (df[ck] == chrom) & (
            ((df[sk] < end) & (df[ek] > start)) | 
            ((df[sk] == df[ek]) & (df[sk] == start))  # include points at query start
        )
    return mask.to_numpy()


def select_indices(df, region, cols=None):
    """
    Return integer indices of all genomic intervals that overlap a query range.

    Parameters
    ----------
    df : pandas.DataFrame

    region : str or tuple
        The genomic region to select from the dataframe in UCSC-style genomic
        region string, or triple (chrom, start, end).

    cols : (str, str, str) or None
        The names of columns containing the chromosome, start and end of the
        genomic intervals. The default values are 'chrom', 'start', 'end'.

    Returns
    -------
    1D array of int
    """
    return np.nonzero(select_mask(df, region, cols))[0]


def select_labels(df, region, cols=None):
    """
    Return pandas Index labels of all genomic intervals that overlap a query
    range.

    Parameters
    ----------
    df : pandas.DataFrame

    region : str or tuple
        The genomic region to select from the dataframe in UCSC-style genomic
        region string, or triple (chrom, start, end).

    cols : (str, str, str) or None
        The names of columns containing the chromosome, start and end of the
        genomic intervals. The default values are 'chrom', 'start', 'end'.

    Returns
    -------
    pandas.Index
    """
    return df.index[select_mask(df, region, cols)]


def select(df, region, cols=None):
    """
    Return all genomic intervals in a dataframe that overlap a genomic region.

    Parameters
    ----------
    df : pandas.DataFrame

    region : str or tuple
        The genomic region to select from the dataframe in UCSC-style genomic
        region string, or triple (chrom, start, end).

    cols : (str, str, str) or None
        The names of columns containing the chromosome, start and end of the
        genomic intervals. The default values are 'chrom', 'start', 'end'.

    Returns
    -------
    df : pandas.DataFrame

    Notes
    -----
    See :func:`.core.stringops.parse_region()` for more information on region
    formatting.

    See also
    --------
    :func:`select_mask`
    :func:`select_indices`
    :func:`select_labels`
    """
    return df.loc[select_mask(df, region, cols)]


def expand(df, pad=None, scale=None, side="both", cols=None):
    """
    Expand each interval by an amount specified with `pad`.

    Negative values for pad shrink the interval, up to the midpoint.
    Multiplicative rescaling of intervals enabled with scale. Only one of pad
    or scale can be provided. Often followed by :func:`trim()`.

    Parameters
    ----------
    df : pandas.DataFrame

    pad : int, optional
        The amount by which the intervals are additively expanded *on each side*.
        Negative values for pad shrink intervals, but not beyond the interval midpoint.
        Either `pad` or `scale` must be supplied.

    scale : float, optional
        The factor by which to scale intervals multiplicatively on each side, e.g
        ``scale=2`` doubles each interval, ``scale=0`` returns midpoints, and
        ``scale=1`` returns original intervals. Default False.
        Either `pad` or `scale` must be supplied.

    side : str, optional
        Which side to expand, possible values are 'left', 'right' and 'both'.
        Default 'both'.

    cols : (str, str, str) or None
        The names of columns containing the chromosome, start and end of the
        genomic intervals. Default values are 'chrom', 'start', 'end'.

    Returns
    -------
    df_expanded : pandas.DataFrame

    Notes
    -----
    See :func:`bioframe.trim` for trimming interals after expansion.

    """

    ck, sk, ek = _get_default_colnames() if cols is None else cols
    checks.is_bedframe(df, raise_errors=True, cols=[ck, sk, ek])

    if scale is not None:
        if scale < 0:
            raise ValueError("multiplicative scale must be >=0")
        pads = 0.5 * (scale - 1) * (df[ek].values - df[sk].values)
        types = df.dtypes[[sk, ek]]
    elif pad is not None:
        if not isinstance(pad, int):
            raise ValueError("additive pad must be integer")
        pads = pad
    else:
        raise ValueError("either pad or scale must be supplied")

    df_expanded = df.copy()
    if side == "both" or side == "left":
        df_expanded[sk] = df[sk].values - pads
    if side == "both" or side == "right":
        df_expanded[ek] = df[ek] + pads

    if pad is not None:
        if pad < 0:
            mids = df[sk].values + (0.5 * (df[ek].values - df[sk].values)).astype(np.int64)
            df_expanded[sk] = np.minimum(df_expanded[sk].values, mids)
            df_expanded[ek] = np.maximum(df_expanded[ek].values, mids)
    if scale is not None:
        df_expanded[[sk, ek]] = df_expanded[[sk, ek]].round()
        df_expanded[[sk, ek]] = df_expanded[[sk, ek]].astype(types)

    return df_expanded


def _overlap_intidxs(df1, df2, how="left", cols1=None, cols2=None, on=None):
    """
    Find pairs of overlapping genomic intervals and return the integer
    indices of the overlapping intervals.

    Parameters
    ----------
    df1, df2 : pandas.DataFrame
        Two sets of genomic intervals stored as a DataFrame.

    how : {'left', 'right', 'outer', 'inner'}, default 'left'
        How to handle the overlaps on the two dataframes.
        left: use the set of intervals in df1
        right: use the set of intervals in df2
        outer: use the union of the set of intervals from df1 and df2
        inner: use intersection of the set of intervals from df1 and df2

    cols1, cols2 : (str, str, str) or None
        The names of columns containing the chromosome, start and end of the
        genomic intervals, provided separately for each set. The default
        values are 'chrom', 'start', 'end'.

    on : list or None
        Additional shared columns to consider as separate groups.

    Returns
    -------
    overlap_ids : numpy.ndarray
        The indices of the overlapping genomic intervals in the original
        dataframes. The 1st column contains the indices of intervals
        from the 1st set, the 2nd column - the indicies from the 2nd set.
    """

    # Allow users to specify the names of columns containing the interval coordinates.
    ck1, sk1, ek1 = _get_default_colnames() if cols1 is None else cols1
    ck2, sk2, ek2 = _get_default_colnames() if cols2 is None else cols2
    _verify_columns(df1, [ck1, sk1, ek1])
    _verify_columns(df2, [ck2, sk2, ek2])

    # Switch to integer indices.
    df1 = df1.reset_index(drop=True)
    df2 = df2.reset_index(drop=True)

    # Calculate groups, determined by chrom and on.
    group_list1 = [ck1]
    group_list2 = [ck2]
    if on is not None:
        group_list1 += on
        group_list2 += on
    df1_groups = df1.groupby(group_list1, observed=True, dropna=False).indices

    df2_groups = df2.groupby(group_list2, observed=True, dropna=False).indices
    all_groups = set.union(set(df1_groups), set(df2_groups))

    # Find overlapping intervals per group (determined by chrom and on).
    overlap_intidxs = []
    for group_keys in all_groups:
        df1_group_idxs = (
            df1_groups[group_keys] if (group_keys in df1_groups) else np.array([])
        )
        df2_group_idxs = (
            df2_groups[group_keys] if (group_keys in df2_groups) else np.array([])
        )
        overlap_intidxs_sub = []

        both_groups_nonempty = (df1_group_idxs.size > 0) and (df2_group_idxs.size > 0)

        if both_groups_nonempty:
            overlap_idxs_loc = arrops.overlap_intervals(
                df1[sk1].values[df1_group_idxs],
                df1[ek1].values[df1_group_idxs],
                df2[sk2].values[df2_group_idxs],
                df2[ek2].values[df2_group_idxs],
            )

            # Convert local per-chromosome indices into the
            # indices of the original table.
            overlap_intidxs_sub += [
                [
                    df1_group_idxs[overlap_idxs_loc[:, 0]],
                    df2_group_idxs[overlap_idxs_loc[:, 1]],
                ]
            ]

        if how in ["outer", "left"] and df1_group_idxs.size > 0:
            if both_groups_nonempty:
                no_overlap_ids1 = df1_group_idxs[
                    np.where(
                        np.bincount(
                            overlap_idxs_loc[:, 0], minlength=len(df1_group_idxs)
                        )
                        == 0
                    )[0]
                ]
            else:
                no_overlap_ids1 = df1_group_idxs

            overlap_intidxs_sub += [
                [
                    no_overlap_ids1,
                    -1 * np.ones_like(no_overlap_ids1),
                ]
            ]

        if how in ["outer", "right"] and df2_group_idxs.size > 0:
            if both_groups_nonempty:
                no_overlap_ids2 = df2_group_idxs[
                    np.where(
                        np.bincount(
                            overlap_idxs_loc[:, 1], minlength=len(df2_group_idxs)
                        )
                        == 0
                    )[0]
                ]
            else:
                no_overlap_ids2 = df2_group_idxs

            overlap_intidxs_sub += [
                [
                    -1 * np.ones_like(no_overlap_ids2),
                    no_overlap_ids2,
                ]
            ]
        if overlap_intidxs_sub:
            overlap_intidxs.append(
                np.block(
                    [
                        [idxs[:, None] for idxs in idxs_pair]
                        for idxs_pair in overlap_intidxs_sub
                    ]
                )
            )

    if len(overlap_intidxs) == 0:
        return np.ndarray(shape=(0, 2), dtype=int)
    overlap_intidxs = np.vstack(overlap_intidxs)

    return overlap_intidxs


def overlap(
    df1,
    df2,
    how="left",
    return_input=True,
    return_index=False,
    return_overlap=False,
    suffixes=("", "_"),
    keep_order=None,
    cols1=None,
    cols2=None,
    on=None,
):

    """
    Find pairs of overlapping genomic intervals.

    Parameters
    ----------
    df1, df2 : pandas.DataFrame
        Two sets of genomic intervals stored as a DataFrame.

    how : {'left', 'right', 'outer', 'inner'}, default 'left'
        How to handle the overlaps on the two dataframes.
        left: use the set of intervals in df1
        right: use the set of intervals in df2
        outer: use the union of the set of intervals from df1 and df2
        inner: use intersection of the set of intervals from df1 and df2

    return_input : bool
        If True, return columns from input dfs. Default True.

    return_index : bool
        If True, return indicies of overlapping pairs as two new columns
        ('index'+suffixes[0] and 'index'+suffixes[1]). Default False.

    return_overlap : bool
        If True, return overlapping intervals for the overlapping pairs
        as two additional columns (`overlap_start`, `overlap_end`). Default False.

    suffixes : (str, str)
        The suffixes for the columns of the two overlapped sets.

    keep_order : bool, optional
        If True and how='left', sort the output dataframe to preserve the order
        of the intervals in df1. Cannot be used with how='right'/'outer'/'inner'.
        Default True for how='left', and None otherwise.

    cols1, cols2 : (str, str, str) or None
        The names of columns containing the chromosome, start and end of the
        genomic intervals, provided separately for each set. The default
        values are 'chrom', 'start', 'end'.

    on : list or None
        List of additional shared columns to consider as separate groups
        when considering overlaps. A common use would be passing on=['strand'].
        Default is None.

    Returns
    -------
    df_overlap : pandas.DataFrame

    """

    ck1, sk1, ek1 = _get_default_colnames() if cols1 is None else cols1
    ck2, sk2, ek2 = _get_default_colnames() if cols2 is None else cols2
    checks.is_bedframe(df1, raise_errors=True, cols=[ck1, sk1, ek1])
    checks.is_bedframe(df2, raise_errors=True, cols=[ck2, sk2, ek2])

    if (how == "left") and (keep_order is None):
        keep_order = True
    if (how != "left") and (keep_order is True):
        raise ValueError("keep_order=True only allowed for how='left'")

    if on is None:
        on_list = []
    else:
        if not isinstance(on, list):
            raise ValueError("on=[] must be None or list")
        if (ck1 in on) or (ck2 in on):
            raise ValueError("on=[] should not contain chromosome colnames")
        _verify_columns(df1, on)
        _verify_columns(df2, on)
        on_list = on

    overlap_df_idxs = _overlap_intidxs(
        df1,
        df2,
        how=how,
        cols1=cols1,
        cols2=cols2,
        on=on,
    )

    # Generate output tables.
    index_col = return_index if isinstance(return_index, str) else "index"
    index_col_1 = index_col + suffixes[0]
    index_col_2 = index_col + suffixes[1]
    df_index_1 = pd.DataFrame({index_col_1: df1.index[overlap_df_idxs[:, 0]]})
    df_index_2 = pd.DataFrame({index_col_2: df2.index[overlap_df_idxs[:, 1]]})

    df_overlap = None
    if return_overlap:
        overlap_col = return_overlap if isinstance(return_overlap, str) else "overlap"
        overlap_col_sk1 = overlap_col + "_" + sk1
        overlap_col_ek1 = overlap_col + "_" + ek1

        overlap_start = np.maximum(
            df1[sk1].values[overlap_df_idxs[:, 0]],
            df2[sk2].values[overlap_df_idxs[:, 1]],
        )

        overlap_end = np.minimum(
            df1[ek1].values[overlap_df_idxs[:, 0]],
            df2[ek2].values[overlap_df_idxs[:, 1]],
        )

        df_overlap = pd.DataFrame(
            {overlap_col_sk1: overlap_start, overlap_col_ek1: overlap_end}
        )

    df_input_1 = None
    df_input_2 = None
    if return_input is True or str(return_input) == "1" or return_input == "left":
        df_input_1 = df1.iloc[overlap_df_idxs[:, 0]].reset_index(drop=True)
        df_input_1.columns = [c + suffixes[0] for c in df_input_1.columns]
    if return_input is True or str(return_input) == "2" or return_input == "right":
        df_input_2 = df2.iloc[overlap_df_idxs[:, 1]].reset_index(drop=True)
        df_input_2.columns = [c + suffixes[1] for c in df_input_2.columns]

    # Masking non-overlapping regions if using non-inner joins.
    if how != "inner":
        df_index_1[overlap_df_idxs[:, 0] == -1] = None
        df_index_1 = df_index_1.astype({index_col_1: pd.Int64Dtype()})
        df_index_2[overlap_df_idxs[:, 1] == -1] = None
        df_index_2 = df_index_2.astype({index_col_2: pd.Int64Dtype()})

        if df_input_1 is not None:
            df_input_1[overlap_df_idxs[:, 0] == -1] = None
            df_input_1 = df_input_1.astype(
                {
                    (sk1 + suffixes[0]): pd.Int64Dtype(),
                    (ek1 + suffixes[0]): pd.Int64Dtype(),
                }
            )
        if df_input_2 is not None:
            df_input_2[overlap_df_idxs[:, 1] == -1] = None
            df_input_2 = df_input_2.astype(
                {
                    (sk2 + suffixes[1]): pd.Int64Dtype(),
                    (ek2 + suffixes[1]): pd.Int64Dtype(),
                }
            )
        if df_overlap is not None:
            df_overlap[
                (overlap_df_idxs[:, 0] == -1) | (overlap_df_idxs[:, 1] == -1)
            ] = None
            df_overlap = df_overlap.astype(
                {overlap_col_sk1: pd.Int64Dtype(), (overlap_col_ek1): pd.Int64Dtype()}
            )

    out_df = pd.concat(
        [df_index_1, df_input_1, df_index_2, df_input_2, df_overlap], axis="columns"
    )
    if keep_order:
        out_df = out_df.sort_values([index_col_1, index_col_2])

    if not return_index:
        out_df.drop([index_col_1, index_col_2], axis=1, inplace=True)

    out_df.reset_index(drop=True, inplace=True)
    return out_df


def cluster(
    df,
    min_dist=0,
    cols=None,
    on=None,
    return_input=True,
    return_cluster_ids=True,
    return_cluster_intervals=True,
):
    """
    Cluster overlapping intervals into groups.

    Can return numeric ids for these groups (with `return_cluster_ids`=True) and/or
    their genomic coordinates (with `return_cluster_intervals`=True).
    Also see :func:`merge()`, which discards original intervals and returns a new set.

    Parameters
    ----------
    df : pandas.DataFrame

    min_dist : float or None
        If provided, cluster intervals separated by this distance or less.
        If ``None``, do not cluster non-overlapping intervals.
        Since bioframe uses semi-open intervals, interval pairs [0,1) and [1,2)
        do not overlap, but are separated by a distance of 0. Such adjacent intervals
        are not clustered when ``min_dist=None``, but are clustered when ``min_dist=0``.

    cols : (str, str, str) or None
        The names of columns containing the chromosome, start and end of the
        genomic intervals. The default values are 'chrom', 'start', 'end'.

    on : None or list
        List of column names to perform clustering on independently, passed as an argument
        to df.groupby before clustering. Default is ``None``.
        An example useage would be to pass ``on=['strand']``.

    return_input : bool
        If True, return input

    return_cluster_ids : bool
        If True, return ids for clusters

    return_cluster_invervals : bool
        If True, return clustered interval the original interval belongs to

    Returns
    -------
    df_clustered : pd.DataFrame

    """
    if min_dist is not None:
        if min_dist < 0:
            raise ValueError("min_dist>=0 currently required")
    # Allow users to specify the names of columns containing the interval coordinates.
    ck, sk, ek = _get_default_colnames() if cols is None else cols
    _verify_columns(df, [ck, sk, ek])

    # Switch to integer indices.
    df_index = df.index
    df = df.reset_index(drop=True)

    # Find overlapping intervals for groups specified by ck1 and on=[] (default on=None)
    group_list = [ck]
    if on is not None:
        if not isinstance(on, list):
            raise ValueError("on=[] must be None or list")
        if ck in on:
            raise ValueError("on=[] should not contain chromosome colnames")
        _verify_columns(df, on)
        group_list += on
    df_groups = df.groupby(group_list, observed=True).groups

    cluster_ids = np.full(df.shape[0], -1)
    clusters = []
    max_cluster_id = -1

    for group_keys, df_group_idxs in df_groups.items():
        if pd.isna(pd.Series(group_keys)).any():
            continue
        if df_group_idxs.empty:
            continue
        df_group = df.loc[df_group_idxs]
        (
            cluster_ids_group,
            cluster_starts_group,
            cluster_ends_group,
        ) = arrops.merge_intervals(
            df_group[sk].values.astype(np.int64),
            df_group[ek].values.astype(np.int64),
            min_dist=min_dist,
        )

        interval_counts = np.bincount(cluster_ids_group)
        cluster_ids_group += max_cluster_id + 1
        n_clusters = cluster_starts_group.shape[0]
        max_cluster_id += n_clusters

        cluster_ids[df_group_idxs.values] = cluster_ids_group

        ## Storing chromosome names causes a 2x slowdown. :(
        if isinstance(group_keys, str):
            group_keys = tuple((group_keys,))
        clusters_group = {}
        for col in group_list:
            clusters_group[col] = pd.Series(
                data=np.full(n_clusters, group_keys[group_list.index(col)]),
                dtype=df[col].dtype,
            )
        clusters_group[sk] = cluster_starts_group
        clusters_group[ek] = cluster_ends_group
        clusters_group["n_intervals"] = interval_counts
        clusters_group = pd.DataFrame(clusters_group)

        clusters.append(clusters_group)

    df_nans = pd.isnull(df[[sk, ek] + group_list]).any(axis=1)
    if df_nans.sum() > 0:
        cluster_ids[df_nans.values] = (
            max_cluster_id + 1 + np.arange(np.sum(df_nans.values))
        )
        clusters.append(df.loc[df_nans])

    clusters = pd.concat(clusters).reset_index(drop=True)
    if df_nans.sum() > 0:
        clusters = clusters.astype({sk: pd.Int64Dtype(), ek: pd.Int64Dtype()})
    assert np.all(cluster_ids >= 0)

    # reorder cluster columns to have chrom,start,end first
    clusters_names = list(clusters.keys())
    clusters = clusters[
        [ck, sk, ek] + [col for col in clusters_names if col not in [ck, sk, ek]]
    ]

    out_df = {}
    if return_cluster_ids:
        out_df["cluster"] = cluster_ids
    if return_cluster_intervals:
        out_df["cluster_start"] = clusters[sk].values[cluster_ids]
        out_df["cluster_end"] = clusters[ek].values[cluster_ids]

    out_df = pd.DataFrame(out_df)

    if return_input:
        out_df = pd.concat([df, out_df], axis="columns")

    out_df.set_index(df_index)

    return out_df


def merge(df, min_dist=0, cols=None, on=None):
    """
    Merge overlapping intervals.

    This returns a new dataframe of genomic intervals, which have the genomic coordinates
    of the interval cluster groups from the input dataframe. Also :func:`cluster()`, which
    returns the assignment of intervals to clusters prior to merging.

    Parameters
    ----------
    df : pandas.DataFrame

    min_dist : float or None
        If provided, merge intervals separated by this distance or less.
        If None, do not merge non-overlapping intervals. Using
        ``min_dist=0`` and ``min_dist=None`` will bring different results.
        bioframe uses semi-open intervals, so interval pairs [0,1) and [1,2)
        do not overlap, but are separated by a distance of 0. Adjacent intervals
        are not merged when ``min_dist=None``, but are merged when ``min_dist=0``.

    cols : (str, str, str) or None
        The names of columns containing the chromosome, start and end of the
        genomic intervals. The default values are 'chrom', 'start', 'end'.

    on : None or list
        List of column names to perform clustering on independently, passed as an argument
        to df.groupby before clustering. Default is None.
        An example useage would be to pass ``on=['strand']``.

    Returns
    -------
    df_merged : pandas.DataFrame
        A pandas dataframe with coordinates of merged clusters.

    Notes
    -------
    Resets index.

    """

    if min_dist is not None:
        if min_dist < 0:
            raise ValueError("min_dist>=0 currently required")

    # Allow users to specify the names of columns containing the interval coordinates.
    ck, sk, ek = _get_default_colnames() if cols is None else cols
    checks.is_bedframe(df, raise_errors=True, cols=[ck, sk, ek])

    df = df.copy()
    df.reset_index(inplace=True, drop=True)

    # Find overlapping intervals for groups specified by on=[] (default on=None)
    group_list = [ck]
    if on is not None:
        if not isinstance(on, list):
            raise ValueError("on=[] must be None or list")
        if ck in on:
            raise ValueError("on=[] should not contain chromosome colnames")
        _verify_columns(df, on)
        group_list += on
    df_groups = df.groupby(group_list, observed=True).groups

    clusters = []

    for group_keys, df_group_idxs in df_groups.items():
        if pd.isna(pd.Series(group_keys)).any():
            continue
        if df_group_idxs.empty:
            continue

        df_group = df.loc[df_group_idxs]
        (
            cluster_ids_group,
            cluster_starts_group,
            cluster_ends_group,
        ) = arrops.merge_intervals(
            df_group[sk].values.astype(np.int64),
            df_group[ek].values.astype(np.int64),
            min_dist=min_dist
            # df_group[sk].values, df_group[ek].values, min_dist=min_dist
        )
        interval_counts = np.bincount(cluster_ids_group)
        n_clusters = cluster_starts_group.shape[0]

        ## Storing chromosome names causes a 2x slowdown. :(
        if isinstance(group_keys, str):
            group_keys = tuple((group_keys,))
        clusters_group = {}
        for col in group_list:
            clusters_group[col] = pd.Series(
                data=np.full(n_clusters, group_keys[group_list.index(col)]),
                dtype=df[col].dtype,
            )
        clusters_group[sk] = cluster_starts_group
        clusters_group[ek] = cluster_ends_group
        clusters_group["n_intervals"] = interval_counts
        clusters_group = pd.DataFrame(clusters_group)

        clusters.append(clusters_group)

    df_nans = pd.isnull(df[[sk, ek] + group_list]).any(axis=1)
    df_has_nans = df_nans.sum()
    if df_has_nans:
        nan_intervals = pd.DataFrame(
            [pd.NA] * df_has_nans,
            columns=["n_intervals"],
            index=df.loc[df_nans].index,
        )
        clusters.append(
            pd.concat(
                [df.loc[df_nans], nan_intervals],
                axis=1,
            )
        )

    clusters = pd.concat(clusters).reset_index(drop=True)
    if df_has_nans:
        clusters = clusters.astype(
            {sk: pd.Int64Dtype(), ek: pd.Int64Dtype(), "n_intervals": pd.Int64Dtype()}
        )

    # reorder cluster columns to have chrom,start,end first
    clusters_names = list(clusters.keys())
    clusters = clusters[
        [ck, sk, ek] + [col for col in clusters_names if col not in [ck, sk, ek]]
    ]

    return clusters


def coverage(
    df1,
    df2,
    suffixes=("", "_"),
    return_input=True,
    cols1=None,
    cols2=None,
):
    """
    Quantify the coverage of intervals from 'df1' by intervals from 'df2'.

    For every interval in 'df1' find the number of base pairs covered by intervals in 'df2'.
    Note this only quantifies whether a basepair in 'df1' was covered, as 'df2' is merged
    before calculating coverage.

    Parameters
    ----------
    df1, df2 : pandas.DataFrame
        Two sets of genomic intervals stored as a DataFrame.

    suffixes : (str, str)
        The suffixes for the columns of the two overlapped sets.

    return_input : bool
        If True, return input as well as computed coverage

    cols1, cols2 : (str, str, str) or None
        The names of columns containing the chromosome, start and end of the
        genomic intervals, provided separately for each set. The default
        values are 'chrom', 'start', 'end'.

    Returns
    -------
    df_coverage : pandas.DataFrame

    Notes
    ------
    Resets index.

    """

    ck1, sk1, ek1 = _get_default_colnames() if cols1 is None else cols1
    ck2, sk2, ek2 = _get_default_colnames() if cols2 is None else cols2

    df1.reset_index(inplace=True, drop=True)

    df2_merged = merge(df2, cols=cols2)

    df_overlap = overlap(
        df1,
        df2_merged,
        how="left",
        suffixes=suffixes,
        keep_order=True,
        return_index=True,
        return_overlap=True,
        cols1=cols1,
        cols2=cols2,
    )

    df_overlap["overlap"] = df_overlap["overlap_end"] - df_overlap["overlap_start"]

    out_df = (
        pd.DataFrame(
            df_overlap.groupby("index" + suffixes[0])
            .agg({"overlap": "sum"})["overlap"]
            .astype(df1[sk1].dtype)
        )
        .rename(columns={"overlap": "coverage"})
        .reset_index(drop=True)
    )

    if return_input:
        out_df = pd.concat([df1, out_df], axis="columns")
    return out_df


def _closest_intidxs(
    df1,
    df2=None,
    k=1,
    ignore_overlaps=False,
    ignore_upstream=False,
    ignore_downstream=False,
    direction_col=None,
    tie_breaking_col=None,
    cols1=None,
    cols2=None,
):
    """
    For every interval in set 1 find k closest genomic intervals in set2 and
    return their integer indices.

    Parameters
    ----------
    df1, df2 : pandas.DataFrame
        Two sets of genomic intervals stored as a DataFrame.
        If df2 is None or same object as df1, find closest intervals within the same set.

    k_closest : int
        The number of closest intervals to report.

    cols1, cols2 : (str, str, str)
        The names of columns containing the chromosome, start and end of the
        genomic intervals, provided separately for each set. The default
        values are 'chrom', 'start', 'end'.

    Returns
    -------
    closest_ids : numpy.ndarray
        The indices of the overlapping genomic intervals in the original
        dataframes. The 1st column contains the indices of intervals
        from the 1st set, the 2nd column - the indicies from the 2nd set.
        The second column is filled with -1 for those intervals in the 1st
        set with no closest 2nd set interval.
    """

    # Allow users to specify the names of columns containing the interval coordinates.
    ck1, sk1, ek1 = _get_default_colnames() if cols1 is None else cols1
    ck2, sk2, ek2 = _get_default_colnames() if cols2 is None else cols2

    self_closest = False
    if (df2 is None) or (df2 is df1):
        if len(df1) == 1:
            raise ValueError(
                "df1 must have more than one interval to find closest non-identical interval"
            )
        df2 = df1
        self_closest = True

    # Switch to integer indices.
    df1 = df1.reset_index(drop=True)
    df2 = df2.reset_index(drop=True)

    # Find overlapping intervals per chromosome.
    df1_groups = df1.groupby(ck1, observed=True).groups
    df2_groups = df2.groupby(ck2, observed=True).groups
    closest_intidxs = []
    for group_keys, df1_group_idxs in df1_groups.items():
        if group_keys not in df2_groups:
            #
            closest_idxs_group = np.vstack(
                [
                    df1_group_idxs,
                    -1 * np.ones_like(df1_group_idxs),
                ]
            ).T
            closest_intidxs.append(closest_idxs_group)
            continue

        df2_group_idxs = df2_groups[group_keys]

        df1_group = df1.loc[df1_group_idxs]
        df2_group = df2.loc[df2_group_idxs]

        tie_arr = None
        if isinstance(tie_breaking_col, str):
            tie_arr = df2_group[tie_breaking_col].values
        elif callable(tie_breaking_col):
            tie_arr = tie_breaking_col(df2_group).values
        else:
            ValueError(
                "tie_breaking_col must be either a column label or "
                "f(DataFrame) -> Series"
            )

        # Verify and construct the direction_arr (convert from pandas string column to bool array)
        # TODO: should we add checks that it's valid "strand"?
        direction_arr = None
        if direction_col is None:
            direction_arr = np.ones(len(df1_group), dtype=np.bool_)
        else:
            direction_arr = (df1_group[direction_col].values != "-") # both "+" and "." keep orientation by genomic coordinate

        # Calculate closest intervals with arrops:
        closest_idxs_group = arrops.closest_intervals(
            df1_group[sk1].values,
            df1_group[ek1].values,
            None if self_closest else df2_group[sk2].values,
            None if self_closest else df2_group[ek2].values,
            k=k,
            tie_arr=tie_arr,
            ignore_overlaps=ignore_overlaps,
            ignore_upstream=ignore_upstream,
            ignore_downstream=ignore_downstream,
            direction=direction_arr
        )

        # Convert local per-chromosome indices into the
        # indices of the original table.
        closest_idxs_group = np.vstack(
            [
                df1_group_idxs.values[closest_idxs_group[:, 0]],
                df2_group_idxs.values[closest_idxs_group[:, 1]],
            ]
        ).T

        closest_intidxs.append(closest_idxs_group)

    if len(closest_intidxs) == 0:
        return np.ndarray(shape=(0, 2), dtype=np.int)
    closest_intidxs = np.vstack(closest_intidxs)

    return closest_intidxs


def closest(
    df1,
    df2=None,
    k=1,
    ignore_overlaps=False,
    ignore_upstream=False,
    ignore_downstream=False,
    direction_col=None,
    tie_breaking_col=None,
    return_input=True,
    return_index=False,
    return_distance=True,
    return_overlap=False,
    suffixes=("", "_"),
    cols1=None,
    cols2=None,
):
    """
    For every interval in dataframe `df1` find k closest genomic intervals in dataframe `df2`.

    Currently, we are not taking the feature strands into account for filtering.
    However, the strand can be used for definition of upstream/downstream of the feature (direction).

    Note that, unless specified otherwise, overlapping intervals are considered as closest.
    When multiple intervals are located at the same distance, the ones with the lowest index
    in `df2` are returned.

    Parameters
    ----------
    df1, df2 : pandas.DataFrame
        Two sets of genomic intervals stored as a DataFrame.
        If `df2` is None, find closest non-identical intervals within the same set.

    k : int
        The number of the closest intervals to report.

    ignore_overlaps : bool
        If True, ignore overlapping intervals and return the closest non-overlapping interval.

    ignore_upstream : bool
        If True, ignore intervals in `df2` that are upstream of intervals in `df1`,
        relative to the reference strand or the strand specified by direction_col.

    ignore_downstream : bool
        If True, ignore intervals in `df2` that are downstream of intervals in `df1`,
        relative to the reference strand or the strand specified by direction_col.

    direction_col : str
        Name of direction column that will set upstream/downstream orientation for each feature.
        The column should contain bioframe-compliant strand values ("+", "-", ".").

    tie_breaking_col : str
        A column in `df2` to use for breaking ties when multiple intervals
        are located at the same distance. Intervals with *lower* values will
        be selected.

    return_input : bool
        If True, return input

    return_index : bool
        If True, return indices

    return_distance : bool
        If True, return distances. Returns zero for overlaps.

    return_overlap : bool
        If True, return columns: 'have_overlap', 'overlap_start', and 'overlap_end'.
        Fills df_closest['overlap_start'] and df['overlap_end']
        with None if non-overlapping. Default False.

    suffixes : (str, str)
        The suffixes for the columns of the two sets.

    cols1, cols2 : (str, str, str) or None
        The names of columns containing the chromosome, start and end of the
        genomic intervals, provided separately for each set. The default
        values are 'chrom', 'start', 'end'.


    Returns
    -------
    df_closest : pandas.DataFrame
        If no intervals found, returns none.

    Notes
    -----
    By default, direction is defined by the reference genome: everything with
    smaller coordinate is considered upstream, everything with larger coordinate
    is considered downstream.

    If ``direction_col`` is provided, upstream/downstream are relative to the
    direction column in ``df1``, i.e. features marked "+" and "." strand will
    define upstream and downstream as above, while features marked "-" have
    upstream and downstream reversed: smaller coordinates are downstream and
    larger coordinates are upstream.
    """

    if k < 1:
        raise ValueError("k>=1 required")

    if df2 is df1:
        raise ValueError(
            "pass df2=None to find closest non-identical intervals within the same set."
        )
    # If finding closest within the same set, df2 now has to be set
    # to df1, so that the rest of the logic works.
    if df2 is None:
        df2 = df1

    ck1, sk1, ek1 = _get_default_colnames() if cols1 is None else cols1
    ck2, sk2, ek2 = _get_default_colnames() if cols2 is None else cols2
    checks.is_bedframe(df1, raise_errors=True, cols=[ck1, sk1, ek1])
    checks.is_bedframe(df2, raise_errors=True, cols=[ck2, sk2, ek2])

    closest_df_idxs = _closest_intidxs(
        df1,
        df2,
        k=k,
        ignore_overlaps=ignore_overlaps,
        ignore_upstream=ignore_upstream,
        ignore_downstream=ignore_downstream,
        direction_col=direction_col,
        tie_breaking_col=tie_breaking_col,
        cols1=cols1,
        cols2=cols2,
    )
    na_mask = closest_df_idxs[:, 1] == -1

    if len(closest_df_idxs) == 0:
        return  # case of no closest intervals

    # Generate output tables.
    df_index_1 = None
    df_index_2 = None
    if return_index:
        index_col = return_index if isinstance(return_index, str) else "index"
        df_index_1 = pd.DataFrame(
            {index_col + suffixes[0]: df1.index[closest_df_idxs[:, 0]]}
        )
        df_index_2 = pd.DataFrame(
            {index_col + suffixes[1]: df2.index[closest_df_idxs[:, 1]]}
        )
        df_index_2[na_mask] = pd.NA

    df_overlap = None
    if return_overlap:
        overlap_start = np.amax(
            np.vstack(
                [
                    df1[sk1].values[closest_df_idxs[:, 0]],
                    df2[sk2].values[closest_df_idxs[:, 1]],
                ]
            ),
            axis=0,
        )
        overlap_end = np.amin(
            np.vstack(
                [
                    df1[ek1].values[closest_df_idxs[:, 0]],
                    df2[ek2].values[closest_df_idxs[:, 1]],
                ]
            ),
            axis=0,
        )
        have_overlap = overlap_start < overlap_end

        df_overlap = pd.DataFrame(
            {
                "have_overlap": have_overlap,
                "overlap_start": np.where(have_overlap, overlap_start, None),
                "overlap_end": np.where(have_overlap, overlap_end, None),
            },
        )
        df_overlap = df_overlap.astype(
            {
                "have_overlap": pd.BooleanDtype(),
                "overlap_start": pd.Int64Dtype(),
                "overlap_end": pd.Int64Dtype(),
            }
        )
        df_overlap[na_mask] = pd.NA

    df_distance = None
    if return_distance:
        distance_left = np.maximum(
            0,
            df1[sk1].values[closest_df_idxs[:, 0]]
            - df2[ek2].values[closest_df_idxs[:, 1]],
        )
        distance_right = np.maximum(
            0,
            df2[sk2].values[closest_df_idxs[:, 1]]
            - df1[ek1].values[closest_df_idxs[:, 0]],
        )
        distance = np.amax(np.vstack([distance_left, distance_right]), axis=0)
        df_distance = pd.DataFrame({"distance": distance}, dtype=pd.Int64Dtype())
        df_distance[na_mask] = pd.NA

    df_input_1 = None
    df_input_2 = None
    if return_input is True or str(return_input) == "1" or return_input == "left":
        df_input_1 = df1.iloc[closest_df_idxs[:, 0]].reset_index(drop=True)
        df_input_1.columns = [c + suffixes[0] for c in df_input_1.columns]
    if return_input is True or str(return_input) == "2" or return_input == "right":
        df_input_2 = df2.iloc[closest_df_idxs[:, 1]].reset_index(drop=True)
        df_input_2.columns = [c + suffixes[1] for c in df_input_2.columns]
        df_input_2 = df_input_2.astype(
            {sk2 + suffixes[1]: pd.Int64Dtype(), ek2 + suffixes[1]: pd.Int64Dtype()}
        )
        df_input_2[na_mask] = pd.NA

    out_df = pd.concat(
        [df_index_1, df_input_1, df_index_2, df_input_2, df_overlap, df_distance],
        axis="columns",
    )

    return out_df


def subtract(
    df1,
    df2,
    return_index=False,
    suffixes=("", "_"),
    cols1=None,
    cols2=None,
):
    """
    Generate a new set of genomic intervals by subtracting the second set of genomic intervals from the first.

    Parameters
    ----------
    df1, df2 : pandas.DataFrame
        Two sets of genomic intervals stored as a DataFrame.

    return_index : bool
        Whether to return the indices of the original intervals ('index'+suffixes[0]),
        and the indices of any sub-intervals split by subtraction ('sub_index'+suffixes[1]).
        Default False.

    suffixes : (str,str)
        Suffixes for returned indices. Only alters output if return_index is True.
        Default ("","_").

    cols1, cols2 : (str, str, str) or None
        The names of columns containing the chromosome, start and end of the
        genomic intervals, provided separately for each set. The default
        values are 'chrom', 'start', 'end'.

    Returns
    -------
    df_subtracted : pandas.DataFrame

    Notes
    -----
    Resets index, drops completely subtracted (null) intervals, and casts to pd.Int64Dtype().

    """

    ck1, sk1, ek1 = _get_default_colnames() if cols1 is None else cols1
    ck2, sk2, ek2 = _get_default_colnames() if cols2 is None else cols2

    name_updates = {
        ck1 + suffixes[0]: ck1,
        "overlap_" + sk1: sk1,
        "overlap_" + ek1: ek1,
    }
    extra_columns_1 = [i for i in list(df1.columns) if i not in [ck1, sk1, ek1]]
    for i in extra_columns_1:
        name_updates[i + suffixes[0]] = i
    if return_index:
        name_updates["index" + suffixes[0]] = "index" + suffixes[0]
        name_updates["index" + suffixes[1]] = "complement_index" + suffixes[1]

    all_chroms = np.unique(
        list(pd.unique(df1[ck1].dropna())) + list(pd.unique(df2[ck2].dropna()))
    )
    if len(all_chroms) == 0:
        raise ValueError("No chromosomes remain after dropping nulls")

    df_subtracted = overlap(
        df1,
        complement(
            df2, view_df={i: np.iinfo(np.int64).max for i in all_chroms}, cols=cols2
        ).astype({sk2: pd.Int64Dtype(), ek2: pd.Int64Dtype()}),
        how="left",
        suffixes=suffixes,
        return_index=return_index,
        return_overlap=True,
        keep_order=True,
        cols1=cols1,
        cols2=cols2,
    )[list(name_updates)]
    df_subtracted.rename(columns=name_updates, inplace=True)
    df_subtracted = df_subtracted.iloc[~pd.isna(df_subtracted[sk1].values)]
    df_subtracted.reset_index(drop=True, inplace=True)

    if return_index:
        inds = df_subtracted["index" + suffixes[0]].values
        comp_inds = df_subtracted["complement_index" + suffixes[1]].copy()  # .values
        for i in np.unique(inds):
            comp_inds[inds == i] -= comp_inds[inds == i].min()
        df_subtracted["sub_index" + suffixes[1]] = comp_inds.copy()
        df_subtracted.drop(columns=["complement_index" + suffixes[1]], inplace=True)
    return df_subtracted


def setdiff(df1, df2, cols1=None, cols2=None, on=None):
    """
    Generate a new dataframe of genomic intervals by removing any interval from the
    first dataframe that overlaps an interval from the second dataframe.

    Parameters
    ----------
    df1, df2 : pandas.DataFrame
        Two sets of genomic intervals stored as DataFrames.

    cols1, cols2 : (str, str, str) or None
        The names of columns containing the chromosome, start and end of the
        genomic intervals, provided separately for each dataframe.
        The default values are 'chrom', 'start', 'end'.

    on : None or list
        Additional column names to perform clustering on independently, passed as an argument
        to df.groupby when considering overlaps and must be present in both dataframes.
        Examples for additional columns include 'strand'.

    Returns
    -------
    df_setdiff : pandas.DataFrame

    """
    ck1, sk1, ek1 = _get_default_colnames() if cols1 is None else cols1
    ck2, sk2, ek2 = _get_default_colnames() if cols2 is None else cols2

    df_overlapped = _overlap_intidxs(
        df1, df2, how="inner", cols1=cols1, cols2=cols2, on=on
    )
    inds_non_overlapped = np.setdiff1d(np.arange(len(df1)), df_overlapped[:, 0])
    df_setdiff = df1.iloc[inds_non_overlapped]
    return df_setdiff


def count_overlaps(
    df1,
    df2,
    suffixes=("", "_"),
    return_input=True,
    cols1=None,
    cols2=None,
    on=None,
):
    """
    Count number of overlapping genomic intervals.

    Parameters
    ----------
    df1, df2 : pandas.DataFrame
        Two sets of genomic intervals stored as a DataFrame.

    suffixes : (str, str)
        The suffixes for the columns of the two overlapped sets.

    return_input : bool
        If True, return columns from input dfs. Default True.

    cols1, cols2 : (str, str, str) or None
        The names of columns containing the chromosome, start and end of the
        genomic intervals, provided separately for each set. The default
        values are 'chrom', 'start', 'end'.

    on : list
        List of additional shared columns to consider as separate groups
        when considering overlaps. A common use would be passing on=['strand'].
        Default is None.

    Returns
    -------
    df_counts : pandas.DataFrame

    Notes
    -------
    Resets index.

    """

    df1.reset_index(inplace=True, drop=True)

    df_counts = overlap(
        df1,
        df2,
        how="left",
        return_input=False,
        keep_order=True,
        suffixes=suffixes,
        return_index=True,
        on=on,
        cols1=cols1,
        cols2=cols2,
    )

    out_df = pd.DataFrame(
        df_counts.groupby(["index" + suffixes[0]])["index" + suffixes[1]]
        .count()
        .values,
        columns=["count"],
    )

    if return_input:
        out_df = pd.concat([df1, out_df], axis="columns")
    return out_df


def trim(
    df,
    view_df=None,
    df_view_col=None,
    view_name_col="name",
    return_view_columns=False,
    cols=None,
    cols_view=None,
):
    """
    Trim each interval to fall within regions specified in the viewframe 'view_df'.

    Intervals that fall outside of view regions are replaced with nulls.
    If no 'view_df' is provided, intervals are truncated at zero to avoid
        negative values.

    Parameters
    ----------
    df : pandas.DataFrame

    view_df : None or pandas.DataFrame
        View specifying region start and ends for trimming. Attempts to
        convert dictionary and pd.Series formats to viewFrames.

    df_view_col : str or None
        The column of 'df' used to specify view regions.
        The associated region in 'view_df' is then used for trimming.
        If None, :func:'bioframe.ops.assign_view' will be used to assign view regions.
        If no 'view_df' is provided, uses the 'chrom' column, df[cols[0]].
        Default None.

    view_name_col : str
        Column of df with region names. Default 'name'.

    cols : (str, str, str) or None
        The names of columns containing the chromosome, start and end of the
        genomic intervals. The default values are 'chrom', 'start', 'end'.

    cols_view : (str, str, str) or None
        The names of columns containing the chromosome, start and end of the
        genomic intervals in the view. The default values are 'chrom', 'start', 'end'.

    Returns
    -------
    df_trimmed : pandas.DataFrame

    """

    ck, sk, ek = _get_default_colnames() if cols is None else cols
    _verify_columns(df, [ck, sk, ek])
    df_columns = list(df.columns)
    df_trimmed = df.copy()
    inferred_view = False

    if view_df is None:
        df_view_col = ck
        view_df = {
            i: np.iinfo(np.int64).max
            for i in set(df[df_view_col].copy().dropna().values)
        }
        inferred_view = True

    ckv, skv, ekv = _get_default_colnames() if cols_view is None else cols_view
    view_df = construction.make_viewframe(
        view_df, view_name_col=view_name_col, cols=[ckv, skv, ekv]
    ).rename(columns=dict(zip([ckv, skv, ekv], [ck, sk, ek])))

    if inferred_view:
        view_name_col = ck
    elif df_view_col is None:
        if _verify_columns(df_trimmed, ["view_region"], return_as_bool=True):
            raise ValueError("column view_region already exists in input df")
        df_view_col = "view_region"

        df_trimmed = assign_view(
            df_trimmed,
            view_df,
            drop_unassigned=False,
            df_view_col=df_view_col,
            view_name_col=view_name_col,
            cols=cols,
            cols_view=cols,
        )
    else:
        _verify_columns(df_trimmed, [df_view_col])
        checks.is_cataloged(
            df_trimmed,
            view_df,
            raise_errors=True,
            df_view_col=df_view_col,
            view_name_col=view_name_col,
        )

    df_trimmed = df_trimmed.merge(
        view_df,
        how="left",
        left_on=df_view_col,
        right_on=view_name_col,
        suffixes=("", "_view"),
    )

    unassigned_intervals = pd.isnull(df_trimmed[df_view_col].values)
    if unassigned_intervals.any():
        df_trimmed.loc[unassigned_intervals, [ck, sk, ek]] = pd.NA
        df_trimmed.astype({sk: pd.Int64Dtype(), ek: pd.Int64Dtype()})

    lower_vector = df_trimmed[sk + "_view"].values
    upper_vector = df_trimmed[ek + "_view"].values

    df_trimmed[sk].clip(lower=lower_vector, upper=upper_vector, inplace=True)
    df_trimmed[ek].clip(lower=lower_vector, upper=upper_vector, inplace=True)

    if return_view_columns:
        return df_trimmed
    else:
        return df_trimmed[df_columns]


def complement(df, view_df=None, view_name_col="name", cols=None, cols_view=None):
    """
    Find genomic regions in a viewFrame 'view_df' that are not covered by any interval in the dataFrame 'df'.

    First assigns intervals in 'df' to region in 'view_df', splitting intervals in 'df' as necessary.

    Parameters
    ----------
    df : pandas.DataFrame

    view_df : pandas.Dataframe
        If none, attempts to infer the view from chroms (i.e. df[cols[0]]).

    view_name_col : str
        Name of column in view_df with unique reigon names. Default 'name'.

    cols : (str, str, str)
        The names of columns containing the chromosome, start and end of the
        genomic intervals. The default values are 'chrom', 'start', 'end'.

    cols_view : (str, str, str) or None
        The names of columns containing the chromosome, start and end of the
        genomic intervals in the view. The default values are 'chrom', 'start', 'end'.

    Returns
    -------
    df_complement : pandas.DataFrame

    Notes
    ------
    Discards null intervals in input, and df_complement has regular int dtype.

    """

    ### TODO add on=, so can do strand-specific complements...

    # Allow users to specify the names of columns containing the interval coordinates.
    ck, sk, ek = _get_default_colnames() if cols is None else cols
    _verify_columns(df, [ck, sk, ek])

    if view_df is None:
        view_df = {i: np.iinfo(np.int64).max for i in set(df[ck].dropna().values)}

    ckv, skv, ekv = _get_default_colnames() if cols_view is None else cols_view
    view_df = construction.make_viewframe(
        view_df, view_name_col=view_name_col, cols=[ckv, skv, ekv]
    ).rename(columns=dict(zip([ckv, skv, ekv], [ck, sk, ek])))

    # associate intervals to regions, required to enable single interval from df to
    # overlap multiple intervals in view_df. note this differs from the goal of assign_view.
    new_intervals = overlap(
        view_df,
        df,
        return_overlap=True,
        how="inner",
        suffixes=("", "_df"),
        cols1=cols,
        cols2=cols,
    )
    new_intervals = new_intervals[
        [ck, "overlap_" + sk, "overlap_" + ek, view_name_col]
    ].copy()
    new_intervals.rename(
        columns={
            "overlap_" + sk: sk,
            "overlap_" + ek: ek,
            view_name_col: "view_region",
        },
        inplace=True,
    )
    df = new_intervals
    checks.is_cataloged(
        df,
        view_df,
        raise_errors=True,
        df_view_col="view_region",
        view_name_col=view_name_col,
    )

    # Find overlapping intervals per region.
    df_groups = df.groupby("view_region").groups
    all_groups = sorted(set(view_df[view_name_col]))

    complements = []
    for group_key in all_groups:
        region_interval = view_df.loc[view_df[view_name_col] == group_key]
        region_chrom, region_start, region_end = region_interval[[ck, sk, ek]].values[0]

        if group_key not in df_groups:
            complement_group = region_interval.copy().rename(
                columns={view_name_col: "view_region"}
            )
            complements.append(pd.DataFrame(complement_group))
            continue

        df_group_idxs = df_groups[group_key].values
        df_group = df.loc[df_group_idxs]

        (complement_starts_group, complement_ends_group,) = arrops.complement_intervals(
            df_group[sk].values.astype(np.int64),
            df_group[ek].values.astype(np.int64),
            bounds=(region_start, region_end),
        )

        # Storing chromosome names causes a 2x slowdown. :(
        complement_group = {
            ck: pd.Series(
                data=np.full(complement_starts_group.shape[0], region_chrom),
                dtype=df[ck].dtype,
            ),
            sk: complement_starts_group,
            ek: complement_ends_group,
            "view_region": group_key,
        }
        complement_group = pd.DataFrame(complement_group)

        complements.append(complement_group)

    complements = pd.concat(complements).reset_index(drop=True)

    return complements


def sort_bedframe(
    df,
    view_df=None,
    reset_index=True,
    df_view_col=None,
    view_name_col="name",
    cols=None,
    cols_view=None,
):
    """
    Sorts a bedframe 'df'.

    If 'view_df' is not provided, sorts by ``cols`` (e.g. "chrom", "start", "end").
    If 'view_df' is provided and 'df_view_col' is not provided, uses
    :func:`bioframe.ops.assign_view` with ``df_view_col='view_region'``
    to assign intervals to the view regions with the largest overlap and then sorts.
    If 'view_df' and 'df_view_col' are both provided, checks if the latter
    are cataloged in 'view_name_col', and then sorts.

    df : pandas.DataFrame
        Valid bedframe.

    view_df : pandas.DataFrame | dict-like
        Valid input to make a viewframe. When it is dict-like
        :func:'bioframe.make_viewframe' will be used to convert
        to viewframe. If view_df is not provided df is sorted by chrom and start.

    reset_index : bool
        Default True.

    df_view_col: None | str
        Column from 'df' used to associate intervals with view regions.
        The associated region in 'view_df' is then used for sorting.
        If None, :func:'bioframe.assign_view' will be used to assign view regions.
        Default None.

    view_name_col: str
        Column from view_df with names of regions.
        Default `name`.

    cols : (str, str, str) or None
        The names of columns containing the chromosome, start and end of the
        genomic intervals. The default values are 'chrom', 'start', 'end'.

    cols_view : (str, str, str) or None
        The names of columns containing the chromosome, start and end of the
        genomic intervals in the view. The default values are 'chrom', 'start', 'end'.

    Returns
    -------
    out_df : sorted bedframe

    Notes
    -------
        df_view_col is currently returned as an ordered categorical

    """
    ck1, sk1, ek1 = _get_default_colnames() if cols is None else cols

    if not checks.is_bedframe(df, cols=cols):
        raise ValueError("not a valid bedframe, cannot sort")

    out_df = df.copy()
    if view_df is None:
        out_df.sort_values([ck1, sk1, ek1], inplace=True)

    else:
        ckv, skv, ekv = _get_default_colnames() if cols_view is None else cols_view
        view_df = construction.make_viewframe(
            view_df, view_name_col=view_name_col, cols=[ckv, skv, ekv]
        ).rename(columns=dict(zip([ckv, skv, ekv], [ck1, sk1, ek1])))

        if df_view_col is None:
            if _verify_columns(out_df, ["view_region"], return_as_bool=True):
                raise ValueError("column view_region already exists in input df")
            df_view_col = "view_region"
            out_df = assign_view(
                out_df,
                view_df,
                df_view_col=df_view_col,
                view_name_col=view_name_col,
                cols=cols,
                cols_view=cols,
            )

        else:
            if not _verify_columns(out_df, [df_view_col], return_as_bool=True):
                raise ValueError(
                    "column 'df_view_col' not in input df, cannot sort by view"
                )
            if not checks.is_cataloged(
                out_df[pd.isna(out_df[df_view_col].values) == False],
                view_df,
                df_view_col=df_view_col,
                view_name_col=view_name_col,
            ):
                raise ValueError(
                    "intervals in df not cataloged in view_df, cannot sort by view"
                )

        view_cat = pd.CategoricalDtype(
            categories=view_df[view_name_col].values, ordered=True
        )
        out_df[df_view_col] = out_df[df_view_col].astype({df_view_col: view_cat})
        out_df.sort_values([df_view_col, ck1, sk1, ek1], inplace=True)

    # make sure no columns get appended and dtypes are preserved
    out_df = out_df[df.columns].astype(df.dtypes)

    if reset_index:
        out_df.reset_index(inplace=True, drop=True)

    return out_df


def assign_view(
    df,
    view_df,
    drop_unassigned=False,
    df_view_col="view_region",
    view_name_col="name",
    cols=None,
    cols_view=None,
):
    """
    Associates genomic intervals in bedframe ``df`` with regions in viewframe ``view_df``, based on their largest overlap.

    Parameters
    ----------
    df : pandas.DataFrame

    view_df : pandas.DataFrame
        ViewFrame specifying region start and ends for assignment. Attempts to
        convert dictionary and pd.Series formats to viewFrames.

    drop_unassigned : bool
        If True, drop intervals in df that do not overlap a region in the view.
        Default False.

    df_view_col : str
        The column of ``df`` used to specify view regions.
        The associated region in view_df is then used for trimming.
        If no view_df is provided, uses the chrom column, ``df[cols[0]]``.
        Default "view_region".

    view_name_col : str
        Column of ``view_df`` with region names. Default 'name'.

    cols : (str, str, str) or None
        The names of columns containing the chromosome, start and end of the
        genomic intervals. The default values are 'chrom', 'start', 'end'.

    cols_view : (str, str, str) or None
        The names of columns containing the chromosome, start and end of the
        genomic intervals in the view. The default values are 'chrom', 'start', 'end'.

    Returns
    -------
    out_df : dataframe with an associated view region for each interval in ``out_df[view_name_col]``.

    Notes
    -------
    Resets index.

    """

    ck1, sk1, ek1 = _get_default_colnames() if cols is None else cols

    df = df.copy()
    df.reset_index(inplace=True, drop=True)

    checks.is_bedframe(df, raise_errors=True, cols=cols)
    view_df = construction.make_viewframe(
        view_df, view_name_col=view_name_col, cols=cols_view
    )

    overlap_view = overlap(
        df,
        view_df,
        how="left",
        suffixes=("", "_view"),
        return_overlap=True,
        keep_order=False,
        return_index=True,
        cols1=cols,
        cols2=cols_view,
    )

    overlap_columns = overlap_view.columns
    overlap_view["overlap_length"] = (
        overlap_view["overlap_" + ek1] - overlap_view["overlap_" + sk1]
    )

    out_df = (
        overlap_view.sort_values("overlap_length", ascending=False)
        .drop_duplicates("index", keep="first")
        .sort_values("index")
    )

    out_df.rename(columns={view_name_col + "_view": df_view_col}, inplace=True)

    if drop_unassigned:
        out_df = out_df.iloc[pd.isna(out_df).any(axis=1).values == 0, :]
    out_df.reset_index(inplace=True, drop=True)

    return_cols = list(df.columns) + [df_view_col]

    return out_df[return_cols]