1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
|
---
jupytext:
formats: md:myst
text_representation:
extension: .md
format_name: myst
format_version: 0.13
jupytext_version: 1.11.3
kernelspec:
display_name: Python 3
language: python
name: python3
---
# Genomic interval operations
```{eval-rst}
This guide provides an introdution into how to use bioframe to perform genomic interval operations. For the full list of genomic interval operations, see the :ref:`API reference<API_ops>`.
The following modules are used in this guide:
```
```{code-cell} ipython3
import itertools
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
import bioframe as bf
import bioframe.vis
```
## DataFrames & BedFrames
```{eval-rst}
The core objects in bioframe are pandas DatFrames of genomic intervals, or BedFrames. These can either be defined directly with :py:class:`pandas.DataFrame`:
```
```{code-cell} ipython3
df1 = pd.DataFrame([
['chr1', 1, 5],
['chr1', 3, 8],
['chr1', 8, 10],
['chr1', 12, 14]],
columns=['chrom', 'start', 'end']
)
```
```{eval-rst}
Or via functions in :mod:`bioframe.core.construction`, e.g.:
```
```{code-cell} ipython3
df2 = bioframe.from_any(
[['chr1', 4, 8],
['chr1', 10, 11]],
name_col='chrom')
```
```{eval-rst}
Or ingested from datasets and databases with functions in :mod:`bioframe.io.fileops` and :mod:`bioframe.io.resources`.
```
```{eval-rst}
BedFrames satisfy the following properties:
- chrom, start, end columns
- columns have valid dtypes (object/string/categorical, int/pd.Int64Dtype(), int/pd.Int64Dtype())
- for each interval, if any of chrom, start, end are null, then all are null
- all starts < ends.
Whether a dataframe satisfies these properties can be checked with :func:`bioframe.core.checks.is_bedframe`:
```
```{code-cell} ipython3
bioframe.is_bedframe(df2)
```
```{eval-rst}
See :mod:`bioframe.core.checks` for other functions that test properties of BedFrames and :ref:`Technical Notes<Technical_Notes>` for detailed definitions.
:func:`bioframe.core.construction.sanitize_bedframe` attempts to modfiy a DataFrame such that it satisfies bedFrame requirements.
```
```{eval-rst}
:py:mod:`bioframe.vis` provides plotting utilities for intervals:
```
```{code-cell} ipython3
bf.vis.plot_intervals(df1, show_coords=True, xlim=(0,16))
plt.title('bedFrame1 intervals');
bf.vis.plot_intervals(df2, show_coords=True, xlim=(0,16), colors='lightpink')
plt.title('bedFrame2 intervals');
```
## Overlap
```{eval-rst}
Calculating the overlap between two sets of genomic intervals is a crucial genomic interval operation.
Using :func:`bioframe.overlap`, we can see the two dataframes defined above, ``df1`` and ``df2``, contain two pairs of overlapping intervals:
```
```{code-cell} ipython3
overlapping_intervals = bf.overlap(df1, df2, how='inner', suffixes=('_1','_2'))
display(overlapping_intervals)
```
```{code-cell} ipython3
for i, reg_pair in overlapping_intervals.iterrows():
bf.vis.plot_intervals_arr(
starts = [reg_pair.start_1,reg_pair.start_2],
ends = [reg_pair.end_1,reg_pair.end_2],
colors = ['skyblue', 'lightpink'],
levels = [2,1],
xlim = (0,16),
show_coords = True)
plt.title(f'overlapping pair #{i}')
```
Note that we passed custom suffixes for the outputs (defaults are ``suffixes=("","_")``),
as well as a custom overlap mode (``how='inner'``). The default overlap mode, ``how='left'`` returns each interval in ``df1`` whether or not it overlaps an interval in ``df2``.
```{code-cell} ipython3
overlapping_intervals = bf.overlap(df1, df2)
display(overlapping_intervals)
```
## Cluster
```{eval-rst}
It is often useful to find overlapping intervals within a single set of genomic intervals. In `bioframe`, this is achieved with :func:`bioframe.cluster`. This function returns a DataFrame where subsets of overlapping intervals are assigned to the same group, reported in a new column.
To demonstrate the usage of :func:`bioframe.cluster`, we use the same ``df1`` as above:
```
```{code-cell} ipython3
df1 = pd.DataFrame([
['chr1', 1, 5],
['chr1', 3, 8],
['chr1', 8, 10],
['chr1', 12, 14],
],
columns=['chrom', 'start', 'end']
)
bf.vis.plot_intervals(df1, show_coords=True, xlim=(0,16))
```
Cluster returns a DataFrame where each interval is assigned to a group:
```{code-cell} ipython3
df_annotated = bf.cluster(df1, min_dist=0)
display(df_annotated)
bf.vis.plot_intervals(df_annotated, labels=df_annotated['cluster'], show_coords=True, xlim=(0,16))
```
Note that using ``min_dist=0`` and ``min_dist=None`` give different results, as the latter only clusters overlapping intervals and not adjacent intervals:
```{code-cell} ipython3
df_annotated = bf.cluster(df1, min_dist=None)
display(df_annotated)
bf.vis.plot_intervals(df_annotated, labels=df_annotated['cluster'], show_coords=True, xlim=(0,16))
```
Extending the minimum distance to two (``min_dist=2``) makes all intervals part of the same cluster "0":
```{code-cell} ipython3
df_annotated = bf.cluster(df1, min_dist=2)
display(df_annotated)
bf.vis.plot_intervals(df_annotated, labels=df_annotated['cluster'], show_coords=True, xlim=(0,16))
```
## Merge
```{eval-rst}
Instead of returning cluster assignments, :func:`bioframe.merge` returns a new dataframe of merged genomic intervals. As with :func:`bioframe.cluster`, using ``min_dist=0`` and ``min_dist=None`` gives different results.
If ``min_dist=0``, this returns a dataframe of two intervals:
```
```{code-cell} ipython3
df_merged = bf.merge(df1, min_dist=0)
display(df_merged)
bf.vis.plot_intervals(df_merged, show_coords=True, xlim=(0,16))
```
If ``min_dist=None``, this returns a dataframe of three intervals:
```{code-cell} ipython3
df_merged = bf.merge(df1, min_dist=None)
display(df_merged)
bf.vis.plot_intervals(df_merged, show_coords=True, xlim=(0,16))
```
## Closest
```{eval-rst}
In genomics, it is often useful not only to find features that overlap, but also features that are nearby along the genome. In bioframe, this is achieved using :func:`bioframe.closest`.
```
```{code-cell} ipython3
closest_intervals = bf.closest(df1, df2, suffixes=('_1','_2'))
display(closest_intervals)
```
```{code-cell} ipython3
for i, reg_pair in closest_intervals.iterrows():
bf.vis.plot_intervals_arr(
starts = [reg_pair.start_1,reg_pair.start_2],
ends = [reg_pair.end_1,reg_pair.end_2],
colors = ['skyblue', 'lightpink'],
levels = [2,1],
xlim = (0,16),
show_coords = True)
plt.title(f'closest pair #{i}')
```
```{eval-rst}
By default, :func:`bioframe.closest` reports overlapping intervals. This can be modified by passing ``ignore_overlap=True``. Note the closest pair #2 and #3, which did not overlap, remain the same:
```
```{code-cell} ipython3
closest_intervals = bf.closest(df1, df2, ignore_overlaps=True, suffixes=('_1','_2'))
for i, reg_pair in closest_intervals.iterrows():
bf.vis.plot_intervals_arr(
starts = [reg_pair.start_1,reg_pair.start_2],
ends = [reg_pair.end_1,reg_pair.end_2],
colors = ['skyblue', 'lightpink'],
levels = [2,1],
xlim = (0,16),
show_coords = True)
plt.title(f'closest pair #{i}')
```
```{eval-rst}
Closest intervals within a single DataFrame can be found simply by passing a single dataframe to :func:`bioframe.closest`. The number of closest intervals to report per query interval can be adjusted with ``k``.
```
```{code-cell} ipython3
bf.closest(df1, k=2)
```
```{eval-rst}
Closest intervals upstream of the features in df1 can be found by ignoring downstream and overlaps.
Upstream/downstream direction is defined by genomic coordinates by default (smaller coordinate is upstream).
```
```{code-cell} ipython3
bf.closest(df1, df2,
ignore_overlaps=True,
ignore_downstream=True)
```
```{eval-rst}
If the features in df1 have direction (e.g., genes have transcription direction), then the definition of upstream/downstream
direction can be changed to the direction of the features by `direction_col`:
```
```{code-cell} ipython3
bf.closest(df1, df2,
ignore_overlaps=True,
ignore_downstream=True,
direction_col='strand')
```
## Coverage & Count Overlaps
```{eval-rst}
For two sets of genomic features, it is often useful to calculate the number of basepairs covered and the number of overlapping intervals. While these are fairly straightforward to compute from the output of :func:`bioframe.overlap` with :func:`pandas.groupby` and column renaming, since these are very frequently used, they are provided as core bioframe functions.
```
```{code-cell} ipython3
df1_coverage = bf.coverage(df1, df2)
display(df1_coverage)
```
```{code-cell} ipython3
df1_coverage_and_count = bf.count_overlaps(df1_coverage, df2)
display(df1_coverage_and_count)
```
This plot shows the coverage and number of overlaps for intervals in ``df1`` by ``df2``:
```{code-cell} ipython3
bf.vis.plot_intervals(
df1_coverage_and_count,
show_coords=True, xlim=(0,16),
labels = [f'{cov} bp, {n} intervals'
for cov, n in zip(df1_coverage_and_count.coverage, df1_coverage_and_count['count'])])
bf.vis.plot_intervals(df2, show_coords=True, xlim=(0,16), colors='lightpink')
```
## Subtract & Set Difference
```{eval-rst}
Bioframe has two functions for computing differences between sets of intervals: at the level of basepairs and at the level of whole intervals.
Basepair-level subtraction is performed with :func:`bioframe.subtract`:
```
```{code-cell} ipython3
subtracted_intervals = bf.subtract(df1, df2)
display(subtracted_intervals)
```
```{code-cell} ipython3
bf.vis.plot_intervals(subtracted_intervals, show_coords=True, xlim=(0,16))
```
```{eval-rst}
Interval-level differences are calculated with :func:`bioframe.setdiff`:
```
```{code-cell} ipython3
setdiff_intervals = bf.setdiff(df1, df2)
display(setdiff_intervals)
```
```{code-cell} ipython3
bf.vis.plot_intervals(setdiff_intervals, show_coords=True, xlim=(0,16))
```
## Expand
```{eval-rst}
:func:`bioframe.expand` enables quick resizing of intervals.
Expand supports additive resizing, with ``pad``.
Note that unless subsequently trimmed (with :func:`bioframe.trim`),
expanded intervals can have negative values:
```
```{code-cell} ipython3
expanded_intervals = bf.expand(df1, pad=2)
display(expanded_intervals)
```
```{code-cell} ipython3
bf.vis.plot_intervals(expanded_intervals, show_coords=True, xlim=(0,16))
```
```{eval-rst}
Expand also supports multiplicative resizing, with ``scale``. Note that ``scale=0`` resizes all intervals to their midpoints:
```
```{code-cell} ipython3
expanded_intervals = bf.expand(df1, scale=0)
display(expanded_intervals)
```
```{code-cell} ipython3
bf.vis.plot_intervals(expanded_intervals, show_coords=True, xlim=(0,16))
```
## Genomic Views
```{eval-rst}
Certain interval operations are often used relative to a set of reference intervals, whether those are chromosomes, scaffolds, or sub-intervals of either. Bioframe formalizes this with the concept of a `genomic view`, implemented as pandas dataframes, termed viewFrames, that satisfy the following:
- all requirements for bedFrames, including columns for ('chrom', 'start', 'end')
- it has an additional column, ``view_name_col``, with default 'name'
- entries in the view_name_col are unique
- intervals are non-overlapping
- it does not contain null values
Importanly a `genomic view` specifies a global coordinate axis, i.e. a conversion from a genomic coordinate system to a single axis. See :ref:`Technical Notes<Technical_Notes>` for more details.
Bioframe provides a function to assign intervals to corresponding intervals in a view, :func:`bioframe.assign_view`, a function to construct views from various input formats, :func:`bioframe.core.construction.make_viewframe`, and a function check that viewframe requirements are met, :func:`bioframe.core.checks.is_viewframe`.
The following genomic interval operations make use of views, though also have useful default behavior if no view is provided: :func:`bioframe.complement`, :func:`bioframe.trim`, :func:`bioframe.sort_bedframe`.
```
## Complement
```{eval-rst}
Equally important to finding which genomic features overlap is finding those that do not. :func:`bioframe.complement` returns a BedFrame of intervals not covered by any intervals in an input BedFrame.
Complments are defined relative to a `genomic view`. Here this is provided as a dictionary with a single chromosome of length 15:
```
```{code-cell} ipython3
df_complemented = bf.complement(df1, view_df={'chr1':15})
display(df_complemented)
```
```{code-cell} ipython3
bf.vis.plot_intervals(df_complemented, show_coords=True, xlim=(0,16), colors='lightpink')
```
If no view is provided, complement is calculated per unique chromosome in the input with right limits of ``np.iinfo(np.int64).max``.
```{code-cell} ipython3
df_complemented = bf.complement(df1)
display(df_complemented)
```
## Trim
```{eval-rst}
Certain regions are often best avoided for genomic analyses. :func:`bioframe.trim` trims intervals to a specified view. Intervals falling outside of view regions have their filled with null values.
```
```{code-cell} ipython3
view_df = pd.DataFrame(
[
["chr1", 0, 4, "chr1p"],
["chr1", 5, 9, "chr1q"],
["chrX", 0, 50, "chrX"],
["chrM", 0, 10, "chrM"]],
columns=["chrom", "start", "end", "name"],
)
trimmed_intervals = bf.trim(df1, view_df)
display(trimmed_intervals)
```
Note that the last interval of ``df1`` fell beyond 'chr1q' and is now null, and the last interval now ends at 9 instead of 10.
```{code-cell} ipython3
bf.vis.plot_intervals(trimmed_intervals, show_coords=True, xlim=(0,16))
```
If no view is provided, this function trims intervals at zero to avoid negative values.
## Sorting
```{eval-rst}
If no view is provided, :func:`bioframe.sort_bedframe` sorts by ("chrom", "start", "end") columns:
```
```{code-cell} ipython3
df_unsorted = pd.DataFrame([
['chrM', 3, 8],
['chrM', 1, 5],
['chrX', 12, 14],
['chrX', 8, 10]],
columns=['chrom', 'start', 'end']
)
display( bf.sort_bedframe(df_unsorted) )
```
Views enable a specifying a sort order on a set of intervals. This flexibility is useful when the desired sorting order is non-lexicographical, e.g. with chrM after autosomes and chrX:
```{code-cell} ipython3
display( bf.sort_bedframe(df_unsorted, view_df) )
```
## Selecting & Slicing
Since bioFrame operates directly with [pandas](https://pandas.pydata.org/) *DataFrames*, all typical selection and slicing operations are directly relevant.
```{eval-rst}
Bioframe also provides a function :func:`bioframe.select` that enables selecting interval subsets using UCSC string format:
```
```{code-cell} ipython3
display( bioframe.select(df_unsorted,'chrX:8-14') )
```
## Flexible column naming
+++
Genomic analyses often deal with dataframes with inhomogeneously named columns. Bioframe offers a way to set the default column names that are most convenient for your analyses.
Default bedframe column names are stored in ``bioframe.core.specs_rc``.
```{code-cell} ipython3
bf.core.specs._rc
```
If the dataframes we wish to work with have `['CHROMOSOME', 'LEFT', 'RIGHT']`, we can either pass cols to operations in ``bioframe.ops``:
```{code-cell} ipython3
df1_diff_colnames = pd.DataFrame([
['chr1', 1, 5],
['chr1', 3, 8]],
columns=['CHROMOSOME', 'LEFT', 'RIGHT']
)
df2_diff_colnames = pd.DataFrame([
['chr1', 4, 8],
['chr1', 10, 11]],
columns=['CHROMOSOME', 'LEFT', 'RIGHT']
)
```
```{code-cell} ipython3
bf.overlap(
df1_diff_colnames, df2_diff_colnames,
cols1=['CHROMOSOME', 'LEFT', 'RIGHT'],
cols2=['CHROMOSOME', 'LEFT', 'RIGHT'],
)
```
Or, we can update the default column names:
```{code-cell} ipython3
with bf.core.specs.update_default_colnames(['CHROMOSOME', 'LEFT', 'RIGHT']):
display(bf.overlap(
df1_diff_colnames, df2_diff_colnames,
))
```
```{code-cell} ipython3
# setting colnames back to default.
bf.core.specs.update_default_colnames(['chrom', 'start', 'end'])
bf.core.specs._rc
```
|