1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
|
"""Validate a BED dataframe against the BED specification.
The BED specification is defined here: https://github.com/samtools/hts-specs/blob/master/BEDv1.pdf
Some facts
----------
* Intervals are 0-based, half-open
* Fields use 7-bit printable ASCII, including spaces but excluding tabs,
newlines and other control characters
* Flavors: BED{3,4,5,6,7,8,9,12}+m: m corresponds to custom fields, you
can also do BEDn+ for an unspecified number of custom fields
* First 3 fields are mandatory, last 9 are optional
* BED10 and BED11 are illegal
* Order is "binding": if an optional field is filled then all previous ones
must also be filled
* Standard BED fields can never be empty - must use a special null or
"uninformative" placeholder value
* Custom BED fields can be empty when a single tab is used as delimiter
Delimiters
----------
While the BED spec allows for the use of either spaces or tabs as delimiters,
even permitting a mixture in the same file, we do not validate any of the
whitespace constraints imposed on fields in the spec to deal with the
possibility of either space or mixed whitespace delimiters in the file. We
assume that the dataframe will be written using a single tab as the sole
delimiter, as recommended.
Information we are agnostic to:
- The delimiter used in the file before it was parsed: we work with files that
have already been parsed into a dataframe.
- Comment lines and blank lines: we assume that the dataframe contains only
data lines.
- Custom field names, dtypes, and values.
Information supplied out-of-band:
- Assembly/chromsizes: a dictionary or pandas Series mapping chromosome names
to lengths [optional].
- Custom fields in positions 4-12: which of the first 4 to 12 fields are
provided as standard BED fields and which are custom fields.
Note that the spec is overly strict. For example, many BED files in the wild
will use "." as the uninformative score value for all features, but the spec
requires that the score be an integer between 0-1000. We provide some lenience
by allowing floats as well, which many tools use in practice. The spec defines
the uninformative score value as 0.
We also don't enforce limiting name fields to 7-bit printable ascii.
"""
from __future__ import annotations
import pathlib
import re
import warnings
from typing import Callable
import numpy as np
import pandas as pd
__all__ = ["to_bed"]
UINT64_MAX = np.iinfo(np.uint64).max
# Custom BED fields should contain either one of these data types or a
# comma-separated list of Integer, Unsigned, or Float.
BED_DTYPE_MAP = {
"Integer": np.int64,
"Unsigned": np.uint64,
"Float": np.float64,
"Character": object,
"String": object,
}
BED_FIELD_NAMES = [
"chrom",
"start",
"end",
"name",
"score",
"strand",
"thickStart",
"thickEnd",
"itemRgb",
"blockCount",
"blockSizes",
"blockStarts",
]
BED_FIELD_KINDS = {
"chrom": "OU",
"start": "iu",
"end": "iu",
"name": "OU",
"score": "iuf",
"strand": "OU",
"thickStart": "iu",
"thickEnd": "iu",
"itemRgb": "iOU", # can believe 0 is i
"blockCount": "iu",
"blockSizes": "OU",
"blockStarts": "OU",
}
BED_FIELD_FILLVALUES = {
"chrom": "_",
"start": 0,
"end": 0,
"name": ".",
"score": 0,
"strand": ".",
"itemRgb": "0",
}
BED_FIELD_VALIDATORS = {}
def validator(col: str) -> Callable:
def decorator(func: Callable) -> Callable:
BED_FIELD_VALIDATORS[col] = func
return func
return decorator
@validator("chrom")
def check_chrom(df: pd.DataFrame) -> dict[bool]:
"""
Validate the chromosome names of a BED dataframe.
The chrom column is limited to non-whitespace word characters only
(alphanumeric characters and underscores). Each name must be between 1 and
255 characters in length, inclusive.
"""
# Check that the chrom column contains only alphanumeric characters
is_alnum = df["chrom"].str.match(r"^[A-Za-z0-9_]+$").all()
# Check that the name column is no longer than 255 characters
lengths = df["chrom"].str.len()
is_len_ok = ((lengths >= 1) & (lengths <= 255)).all()
return {
"chrom.is_alnum": is_alnum,
"chrom.is_len_ok": is_len_ok,
}
@validator("start")
def check_start(
df: pd.DataFrame, chromsizes: dict | pd.Series | None = None
) -> dict[bool]:
"""
Validate the start coordinates of a BED dataframe.
Start must be an integer greater than or equal to 0 and less than or equal
to the total number of bases of the chromosome to which it belongs.
If the size of the chromosome is unknown, then start must be less than or
equal to 2**64 - 1, which is the maximum size of an unsigned 64-bit integer.
"""
# Check that the start column contains only non-negative integers
is_nonneg = (df["start"] >= 0).all()
# Check that the start column contains only integers less than 2**64 - 1
is_le_64 = (df["start"] <= UINT64_MAX).all()
out = {
"start.is_nonneg": is_nonneg,
"start.is_le_64": is_le_64,
}
# Check that the start column contains only integers < the chromosome size
if chromsizes is not None:
chromsizes = pd.Series(chromsizes)
is_lt_chrom = (df["end"] < chromsizes[df["chrom"]]).all()
out["start.is_lt_chrom"] = is_lt_chrom
return out
@validator("end")
def check_end(
df: pd.DataFrame, chromsizes: dict | pd.Series | None = None
) -> dict[bool]:
"""
Validate the end coordinates of a BED dataframe.
End must be an integer greater than or equal to the value of start and
less than or equal to the total number of bases in the chromosome to
which it belongs.
If the size of the chromosome is unknown, then end must be less than or
equal to 2**64 - 1, the maximum size of an unsigned 64-bit integer.
"""
# Check that the end column contains only non-negative integers
is_nonneg = (df["end"] >= 0).all()
# Check that the end column contains only integers less than 2**64 - 1
is_le_64 = (df["end"] <= UINT64_MAX).all()
is_end_ge_start = (df["end"] >= df["start"]).all()
out = {
"end.is_nonneg": is_nonneg,
"end.is_le_64": is_le_64,
"end.is_end_ge_start": is_end_ge_start,
}
# Check that the end column contains only integers <= the chromosome size
if chromsizes is not None:
chromsizes = pd.Series(chromsizes)
is_le_chrom = (df["end"] <= chromsizes[df["chrom"]]).all()
out["end.is_le_chrom"] = is_le_chrom
return out
@validator("name")
def check_name(df: pd.DataFrame) -> dict[bool]:
"""
Validate the name column of a BED dataframe.
Name must be 1 to 255 non-tab characters. Multiple data lines may share
the same name. If all features have uninformative names, dot (.) may be
used as a name on every data line.
"""
# Check that the name column is no longer than 255 characters
lengths = df["name"].str.len()
is_len_ok = ((lengths >= 1) & (lengths <= 255)).all()
return {
"name.is_len_ok": is_len_ok,
}
@validator("score")
def check_score(df: pd.DataFrame) -> dict[bool]:
"""
Validate the score column of a BED dataframe.
Integer between 0 and 1000, inclusive. When all features have uninformative
scores, 0 should be used as the score on every data line.
Note: Using "." is illegal in the spec, but is used in practice. 0 is the
the uninformative score used in the spec.
"""
# Check that the score column contains only integers between 0 and 1000, inclusive
is_in_range = ((df["score"] >= 0) & (df["score"] <= 1000)).all()
return {
"score.is_in_range": is_in_range,
}
@validator("strand")
def check_strand(df: pd.DataFrame) -> dict[bool]:
"""
Validate the strand column of a BED dataframe.
Strand must be one of +, -, . (no strand), or ? (unknown strand).
When parsing files that are not BED6+, strand should be treated as ".".
"""
# Check that the strand column contains only valid strand characters
is_pattern_ok = df["strand"].str.match(r"^[+\-.?]$").all()
return {
"strand.is_pattern_ok": is_pattern_ok,
}
@validator("thickStart")
def check_thickStart(df: pd.DataFrame) -> dict[bool]:
"""
Validate the thickStart column of a BED dataframe.
Must be an integer between start and end, inclusive. When all features
have uninformative thickStarts, the value of start should be used.
"""
# Check that the thickStart column contains only integers between start and end,
# inclusive
is_ge_start = (df["thickStart"] >= df["start"]).all()
is_le_end = (df["thickStart"] <= df["end"]).all()
return {
"thickStart.is_ge_start": is_ge_start,
"thickStart.is_le_end": is_le_end,
}
@validator("thickEnd")
def check_thickEnd(df: pd.DataFrame) -> dict[bool]:
"""
Validate the thickEnd column of a BED dataframe.
Must be an integer greater than or equal to start and less than or equal
to end, inclusive. When all features have uninformative thickEnds, the
value of end should be used.
"""
# Check that the thickEnd column contains only integers between start and end,
# inclusive
is_ge_start = (df["thickEnd"] >= df["start"]).all()
is_le_end = (df["thickEnd"] <= df["end"]).all()
return {
"thickEnd.is_ge_start": is_ge_start,
"thickEnd.is_le_end": is_le_end,
}
@validator("itemRgb")
def check_itemRgb(df: pd.DataFrame) -> dict[bool]:
"""
Validate the itemRgb column of a BED dataframe.
A triple of 3 integers separated by commas. Each integer is between 0 and
255, inclusive. To make a feature black, itemRgb may be a single 0, as a
shorthand for 0,0,0. When all features have uninformative itemRgb values,
0 should be used.
"""
# Check that the itemRgb is a triple of integers separated by commas
# or a single 0
is_pattern_ok = (
df["itemRgb"].astype(str).str.match(r"^(\d{1,3},){2}\d{1,3}$")
| (df["itemRgb"].astype(str) == "0")
).all()
# Check that the itemRgb column contains only integers between 0 and 255, inclusive
is_in_range = (
df["itemRgb"].astype(str)
.str.split(",")
.apply(lambda x: all([int(i) >= 0 and int(i) <= 255 for i in x]))
).all()
return {
"itemRgb.is_pattern_ok": is_pattern_ok,
"itemRgb.is_in_range": is_in_range,
}
@validator("blockCount")
def check_blockCount(df: pd.DataFrame) -> dict[bool]:
"""
Validate the blockCount column of a BED dataframe.
Must be an integer greater than 0.
Note: mandatory in BED12+ files.
"""
# Check that the blockCount column contains only integers greater than 0
is_gt_0 = (df["blockCount"] > 0).all()
return {
"blockCount.is_gt_0": is_gt_0,
}
@validator("blockSizes")
def check_blockSizes(df: pd.DataFrame) -> dict[bool]:
"""
Validate the blockSizes column of a BED dataframe.
Comma-separated list of length blockCount containing the size of each
block. There must be no spaces before or after commas.
There may be a trailing comma after the last element of the list.
Note: mandatory in BED12+ files.
"""
# Check that the blockSizes column contains only comma-separated lists of integers
is_pattern_ok = df["blockSizes"].str.match(r"^(\d+,)*\d+(,)?$").all()
# Check that the number of block sizes matches the blockCount
n_blocks = df["blockSizes"].str.rstrip(",").str.count(",") + 1
is_n_blocks_ok = (n_blocks == df["blockCount"]).all()
return {
"blockSizes.is_pattern_ok": is_pattern_ok,
"blockSizes.is_n_blocks_ok": is_n_blocks_ok,
}
@validator("blockStarts")
def check_blockStarts(df: pd.DataFrame) -> dict[bool]:
"""
Validate the blockStarts column of a BED dataframe.
Comma-separated list of length blockCount containing each block's start
position, relative to start. There must not be spaces before or after the
commas. There may be a trailing comma after the last element of the list.
Each element in blockStarts is paired with the corresponding element in
blockSizes.
Each blockStarts element must be an integer between 0 and end - start,
inclusive.
Each block must be contained within the feature. That means that for each
couple i of (blockStart, blockSize), the quantity start +
blockStart + blockSize must be less or equal to end.
The first block must start at start and the last block must end at end.
The blockStarts must be sorted in ascending order.
The blocks must not overlap.
Note: mandatory in BED12+ files.
"""
# Check that the blockStarts column contains only comma-separated lists of integers
is_pattern_ok = df["blockStarts"].str.match(r"^(\d+,)*\d+(,)?$").all()
block_starts = (
df["blockStarts"]
.str.rstrip(",")
.str.split(",")
.apply(lambda x: [int(i) for i in x])
)
block_sizes = (
df["blockSizes"]
.str.rstrip(",")
.str.split(",")
.apply(lambda x: [int(i) for i in x])
)
bs_start_end = pd.concat(
[block_starts, block_sizes, df["start"], df["end"]], axis=1
)
# Check that the number of block starts matches the blockCount
is_n_blocks_ok = (block_starts.apply(len) == df["blockCount"]).all()
# Check that the blockStarts are in range
is_in_range = bs_start_end.apply(
lambda x: all(
[
x["blockStarts"][i] >= 0 and x["blockStarts"][i] <= x["end"]
for i in range(len(x["blockStarts"]))
]
),
axis=1,
).all()
# Check that the first block begins at start
is_first_block_start = bs_start_end.apply(
(lambda x: x["blockStarts"][0] == 0), axis=1
).all()
# Check that the last block stops at end
is_last_block_end = bs_start_end.apply(
(lambda x: x["blockStarts"][-1] + x["blockSizes"][-1] == x["end"] - x["start"]),
axis=1,
).all()
# Check that the blockStarts are in ascending order
is_sorted = block_starts.apply(lambda x: x == sorted(x)).all()
# Check that the blocks do not overlap
is_no_overlap = True
for row_block_starts, row_block_sizes in zip(
block_starts.values, block_sizes.values
):
for i in range(len(row_block_starts) - 1):
if row_block_starts[i] + row_block_sizes[i] > row_block_starts[i + 1]:
is_no_overlap = False
break
return {
"blockStarts.is_pattern_ok": is_pattern_ok,
"blockStarts.is_n_blocks_ok": is_n_blocks_ok,
"blockStarts.is_in_range": is_in_range,
"blockStarts.is_first_block_start": is_first_block_start,
"blockStarts.is_last_block_end": is_last_block_end,
"blockStarts.is_sorted": is_sorted,
"blockStarts.is_no_overlap": is_no_overlap,
}
def validate_bed_fields(
df: pd.DataFrame,
fields: list[str],
chromsizes: dict | pd.Series | None = None,
strict_score: bool = False,
) -> tuple[set[str], set[str], set[str]]:
"""
Validate the fields of a BED dataframe.
Parameters
----------
df : pd.DataFrame
BED dataframe to validate.
fields : list of str
List of fields to validate.
chromsizes : dict or Series, optional [default: None]
Assembly/chromsizes to validate against.
strict_score : bool, optional [default: False]
Whether to strictly enforce the score field.
Returns
-------
Sets containing: (1) names of fields having an invalid dtype, (2) names of
fields containing at least one null value, (3) properties that failed
validation.
Notes
-----
The BED spec is overly strict. For example, many BED files in the wild will
use "." as the uninformative score value for all features, but the spec
requires that the score be an integer between 0-1000. We provide some
lenience by allowing floats as well, which many tools use in practice. The
spec defines the uninformative score value as 0.
"""
dtype_failed = set()
for col in fields:
kind = df[col].dtype.kind
if strict_score and col == "score":
allowed_kinds = "iu"
else:
allowed_kinds = BED_FIELD_KINDS[col]
if kind not in allowed_kinds:
dtype_failed.add(col)
notnull = {}
for col in fields:
if col not in dtype_failed:
if col == "score" and not strict_score:
continue
notnull[col] = df[col].notnull().all()
notnull = pd.Series(notnull)
notnull_failed = set(notnull.loc[~notnull].index)
props = {}
for col in fields:
if col not in dtype_failed:
if col == "score" and not strict_score:
continue
if col in ("start", "end"):
props.update(BED_FIELD_VALIDATORS[col](df, chromsizes))
else:
props.update(BED_FIELD_VALIDATORS[col](df))
props = pd.Series(props)
prop_failed = set(props.loc[~props].index)
return dtype_failed, notnull_failed, prop_failed
def check_is_sorted(df: pd.DataFrame) -> dict[bool]:
"""
Validate that a BED dataframe is sorted.
BED dataframes should be sorted by chrom, then by start, then by end.
The scheme for sorting the chrom column doesn't matter. The only thing
that matters is that all rows with the same chrom value occur consecutively.
"""
# Check that all rows with the same chrom value are grouped together
run_starts = np.r_[
0, np.flatnonzero(df["chrom"].values[1:] != df["chrom"].values[:-1]) + 1
]
run_values = df["chrom"].to_numpy()[run_starts]
is_chrom_consecutive = len(run_values) == len(np.unique(run_values))
# Check that that within chromosomes the rows are sorted by start, then by end
is_sorted_start_end = True
for _, group in df.groupby("chrom", sort=False):
starts = group["start"].to_numpy()
ends = group["end"].to_numpy()
indices = np.lexsort((ends, starts))
if not (
np.array_equal(starts[indices], starts)
and np.array_equal(ends[indices], ends)
):
is_sorted_start_end = False
break
return {
"sorted.is_chrom_consecutive": is_chrom_consecutive,
"sorted.is_sorted_start_end": is_sorted_start_end,
}
def infer_bed_schema(df: pd.DataFrame) -> tuple[int, bool]:
for i in [12, 9, 8, 7, 6, 5, 4, 3]:
if BED_FIELD_NAMES[i - 1] in df.columns:
n = i
break
else:
raise ValueError("Could not infer a BED schema.")
extended = len(df.columns) > n
return n, extended
def parse_bed_schema(schema: str) -> tuple[int, bool]:
pattern = r"^bed(3|4|5|6|7|8|9|12)?(\+(\d+)?)?$"
match = re.match(pattern, schema.lower())
if not match:
raise ValueError(f"Invalid BED schema name: {schema}")
n = int(match.group(1)) if match.group(1) else 6
extended = match.group(2) is not None
return n, extended
def to_bed_dataframe(
df: pd.DataFrame,
schema: str = "infer",
validate_fields: bool = True,
require_sorted: bool = False,
chromsizes: dict | pd.Series | None = None,
strict_score: bool = False,
replace_na: bool = True,
) -> pd.DataFrame:
if schema == "infer":
n, extended = infer_bed_schema(df)
else:
n, extended = parse_bed_schema(schema)
if (
"chrom" not in df.columns
or "start" not in df.columns
or "end" not in df.columns
):
raise ValueError(
"BED dataframe must have at least 3 fields: chrom, start, end."
)
if n == 12 and (
"blockCount" not in df.columns
or "blockSizes" not in df.columns
or "blockStarts" not in df.columns
):
raise ValueError(
"Informative blockCount, blockSizes, and blockStarts fields are "
"mandatory in BED12+ files."
)
standard_cols = BED_FIELD_NAMES[:n]
fill_cols = list(set(standard_cols) - set(df.columns))
data_cols = list(set(standard_cols) - set(fill_cols))
custom_cols = list(set(df.columns) - set(standard_cols)) if extended else []
fields_with_nulls = set()
if validate_fields:
dtypes_failed, fields_with_nulls, props_failed = validate_bed_fields(
df, data_cols, chromsizes=chromsizes, strict_score=strict_score
)
if dtypes_failed:
raise TypeError(f"Fields contain invalid dtypes: {dtypes_failed}.")
if fields_with_nulls and not replace_na:
raise ValueError(f"Fields contain null values: {fields_with_nulls}.")
if props_failed:
raise ValueError(f"Properties that failed validation: {props_failed}.")
if require_sorted:
props = pd.Series(check_is_sorted(df))
props_failed = props.index[~props].tolist()
if props_failed:
raise ValueError(f"DataFrame isn't properly sorted: {props_failed}.")
bed = pd.DataFrame(index=df.index)
for col in standard_cols:
if col in fill_cols:
if col == "thickStart":
bed[col] = df["start"]
elif col == "thickEnd":
bed[col] = df["end"]
else:
bed[col] = BED_FIELD_FILLVALUES[col]
elif col in fields_with_nulls:
warnings.warn(
f"Standard column {col} contains null values. "
"These will be replaced with the uninformative value "
f"{BED_FIELD_FILLVALUES[col]}.",
stacklevel=2,
)
bed[col] = df[col].fillna(BED_FIELD_FILLVALUES[col])
else:
bed[col] = df[col]
for col in df.columns:
if col in custom_cols:
bed[col] = df[col]
return bed
def to_bed(
df: pd.DataFrame,
path: str | pathlib.Path | None = None,
*,
schema: str = "infer",
validate_fields: bool = True,
require_sorted: bool = False,
chromsizes: dict | pd.Series | None = None,
strict_score: bool = False,
replace_na: bool = True,
na_rep: str = "nan",
) -> str | None:
"""Write a DataFrame to a BED file.
Parameters
----------
df : pd.DataFrame
DataFrame to write.
path : str or Path, optional
Path to write the BED file to. If ``None``, the serialized BED file is
returned as a string.
schema : str, optional [default: "infer"]
BED schema to use. If ``"infer"``, the schema is inferred from the
DataFrame's columns.
validate_fields : bool, optional [default: True]
Whether to validate the fields of the BED file.
require_sorted : bool, optional [default: False]
Whether to require the BED file to be sorted.
chromsizes : dict or pd.Series, optional
Chromosome sizes to validate against.
strict_score : bool, optional [default: False]
Whether to strictly enforce validation of the score field (0-1000).
replace_na : bool, optional [default: True]
Whether to replace null values of standard BED fields with
compliant uninformative values.
na_rep : str, optional [default: "nan"]
String representation of null values if written.
Returns
-------
str or None:
The serialized BED file as a string if ``path`` is ``None``, otherwise
``None``.
"""
bed = to_bed_dataframe(
df,
schema=schema,
validate_fields=validate_fields,
require_sorted=require_sorted,
chromsizes=chromsizes,
strict_score=strict_score,
replace_na=replace_na,
)
return bed.to_csv(path, sep="\t", na_rep=na_rep, index=False, header=False)
|