1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
import urllib
from functools import partial
from typing import Union
from urllib.parse import urljoin
import numpy as np
import pandas as pd
from .assembly import assembly_info
from .fileops import read_chromsizes, read_table
from .schemas import SCHEMAS
__all__ = [
"fetch_chromsizes",
"fetch_centromeres",
"UCSCClient",
]
def fetch_chromsizes(
db: str,
*,
provider: str = "local",
as_bed: bool = False,
filter_chroms: bool = True,
chrom_patterns: tuple = (r"^chr[0-9]+$", r"^chr[XY]$", r"^chrM$"),
natsort: bool = True,
**kwargs,
) -> Union[pd.Series, pd.DataFrame]:
"""
Fetch chromsizes from local storage or the UCSC database.
Parameters
----------
db : str
Assembly name.
provider : str, optional [default: "local"]
The provider of chromsizes. Either "local" for local storage or "ucsc".
as_bed : bool, optional
If True, return chromsizes as an interval DataFrame (chrom, start, end)
instead of a Series.
The remaining options only apply to provider="ucsc".
filter_chroms : bool, optional
Filter for chromosome names given in ``chrom_patterns``.
chrom_patterns : sequence, optional
Sequence of regular expressions to capture desired sequence names.
natsort : bool, optional
Sort each captured group of names in natural order. Default is True.
**kwargs :
Passed to :func:`pandas.read_csv`
Returns
-------
Series of integer bp lengths indexed by sequence name or BED3 DataFrame.
Notes
-----
For more fine-grained control over the chromsizes from local storage,
use :func:`bioframe.assembly_info`.
Examples
--------
>>> fetch_chromsizes("hg38")
name
chr1 248956422
chr2 242193529
chr3 198295559
... ...
chrX 156040895
chrY 57227415
chrM 16569
Name: length, dtype: int64
>>> fetch_chromsizes("hg38", as_bed=True)
chrom start end
0 chr1 0 248956422
1 chr2 0 242193529
2 chr3 0 198295559
... ...
21 chrX 0 156040895
22 chrY 0 57227415
23 chrM 0 16569
See also
--------
bioframe.assembly_info
bioframe.UCSCClient
"""
if provider == "local":
assembly = assembly_info(db)
if as_bed:
return assembly.viewframe[["chrom", "start", "end"]].copy()
else:
return assembly.chromsizes
elif provider == "ucsc":
return UCSCClient(db).fetch_chromsizes(
filter_chroms=filter_chroms,
chrom_patterns=chrom_patterns,
natsort=natsort,
as_bed=as_bed,
**kwargs,
)
else:
raise ValueError(f"Unknown provider '{provider}'")
def _origins_from_cytoband(
cyb: pd.DataFrame, band_col: str = "gieStain"
) -> pd.DataFrame:
"""
Extract chromosomal origin positions separating chromosome arms from
cytological band data. Takes the cytological origin, i.e. the boundary
between the two bands labeled 'acen'.
Parameters
----------
cyb : pandas.DataFrame
DataFrame with cytoband data.
Returns
-------
pandas.DataFrame
A dataframe with columns 'chrom', 'start', 'end', 'mid'.
"""
cyb = cyb[cyb[band_col] == "acen"]
grouped = cyb.groupby("chrom", sort=False)
cens = []
for chrom, group in grouped:
if not len(group) == 2:
raise ValueError(f"Expected 2 'acen' bands for {chrom}, found {len(group)}")
acens = group.sort_values("start")
cens.append(
{
"chrom": chrom,
"start": acens.iloc[0]["start"],
"end": acens.iloc[1]["end"],
"mid": acens.iloc[0]["end"],
}
)
return pd.DataFrame.from_records(cens)
def _origins_from_ucsccentromeres(cens: pd.DataFrame) -> pd.DataFrame:
"""
Extract chromosomal origin positions from UCSC centromeres.txt table
describing centromere model sequences. Takes the midpoint of all
modeled centromere sequences.
Parameters
----------
cens : pandas.DataFrame
DataFrame with centromeres.txt data.
Returns
-------
pandas.DataFrame
A dataframe with columns 'chrom', 'start', 'end', 'mid'.
"""
cens = cens.groupby("chrom").agg({"start": np.min, "end": np.max}).reset_index()
cens["mid"] = (cens["start"] + cens["end"]) // 2
cens = (
cens[["chrom", "start", "end", "mid"]]
.sort_values("chrom")
.reset_index(drop=True)
)
return cens
def fetch_centromeres(db: str, provider: str = "local") -> pd.DataFrame:
"""
Extract centromere locations for a given assembly 'db' from a variety
of file formats in UCSC (cytoband, centromeres) depending on
availability, returning a DataFrame.
Parameters
----------
db : str
Assembly name.
provider : str, optional [default: "local"]
The provider of centromere data. Either "local" for local storage
or "ucsc".
Returns
-------
DataFrame with centromere 'chrom', 'start', 'end', 'mid'.
Notes
-----
When provider="local", centromeres are derived from cytoband tables
in local storage.
Whe provider="ucsc", the fallback priority goes as follows:
- UCSC cytoBand
- UCSC cytoBandIdeo
- UCSC centromeres.txt
Note that UCSC "gap" files no longer provide centromere information.
Currently only works for human assemblies.
See also
--------
bioframe.assembly_info
bioframe.UCSCClient
"""
if provider == "local":
assembly = assembly_info(db)
cyb = assembly.cytobands
if cyb is None:
raise ValueError(
f"No source for centromere data found from provider '{provider}'."
)
return _origins_from_cytoband(cyb, band_col="stain")
elif provider == "ucsc":
client = UCSCClient(db)
fetchers = [
("cytoband", client.fetch_cytoband),
("cytoband", partial(client.fetch_cytoband, ideo=True)),
("centromeres", client.fetch_centromeres),
]
for schema, fetcher in fetchers: # noqa: B007
try:
df = fetcher()
break
except urllib.error.HTTPError:
pass
else:
raise ValueError(
f"No source for centromere data found from provider '{provider}'."
)
if schema == "centromeres":
return _origins_from_ucsccentromeres(df)
else:
return _origins_from_cytoband(df)
else:
raise ValueError(f"Unknown provider '{provider}'")
class UCSCClient:
BASE_URL = "https://hgdownload.soe.ucsc.edu/"
def __init__(self, db: str):
self._db = db
self._db_url = urljoin(self.BASE_URL, f"goldenPath/{db}/")
def fetch_chromsizes(
self,
filter_chroms: bool = True,
chrom_patterns: tuple = (r"^chr[0-9]+$", r"^chr[XY]$", r"^chrM$"),
natsort: bool = True,
as_bed: bool = False,
**kwargs,
) -> Union[pd.Series, pd.DataFrame]:
url = urljoin(self._db_url, f"bigZips/{self._db}.chrom.sizes")
return read_chromsizes(
url,
filter_chroms=filter_chroms,
chrom_patterns=chrom_patterns,
natsort=natsort,
as_bed=as_bed,
**kwargs,
)
def fetch_centromeres(self, **kwargs) -> pd.DataFrame:
url = urljoin(self._db_url, "database/centromeres.txt.gz")
return read_table(url, schema="centromeres", **kwargs)
def fetch_gaps(self, **kwargs):
url = urljoin(self._db_url, "database/gap.txt.gz")
return read_table(
url,
schema="gap",
usecols=["chrom", "start", "end", "length", "type", "bridge"],
**kwargs,
)
def fetch_cytoband(self, ideo: bool = False, **kwargs) -> pd.DataFrame:
if ideo:
url = urljoin(self._db_url, "database/cytoBandIdeo.txt.gz")
else:
url = urljoin(self._db_url, "database/cytoBand.txt.gz")
return read_table(url, schema="cytoband")
def fetch_mrna(self, **kwargs) -> pd.DataFrame:
url = urljoin(self._db_url, "database/all_mrna.txt.gz")
return read_table(
url,
schema=SCHEMAS["all_mrna"],
**kwargs,
)
|