1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
|
-- $Id: biosqldb-mysql.sql,v 1.5 2008-09-26 12:31:42 peterc Exp $
--
-- Copyright 2002-2003 Ewan Birney, Elia Stupka, Chris Mungall
-- Copyright 2003-2008 Hilmar Lapp
--
-- This file is part of BioSQL.
--
-- BioSQL is free software: you can redistribute it and/or modify it
-- under the terms of the GNU Lesser General Public License as
-- published by the Free Software Foundation, either version 3 of the
-- License, or (at your option) any later version.
--
-- BioSQL is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU Lesser General Public License for more details.
--
-- You should have received a copy of the GNU Lesser General Public License
-- along with BioSQL. If not, see <http://www.gnu.org/licenses/>.
--
-- ========================================================================
--
-- Authors: Ewan Birney, Elia Stupka, Hilmar Lapp, Aaron Mackey
-- Post-Cape Town changes by Hilmar Lapp.
-- Singapore changes by Hilmar Lapp and Aaron Mackey.
-- Migration of the MySQL schema to InnoDB by Hilmar Lapp
--
-- comments to biosql - biosql-l@open-bio.org
-- conventions:
-- <table_name>_id is primary internal id (usually autogenerated)
--
-- Certain definitions in this schema, in particular certain unique
-- key constrain definitions, are optional, or may optionally be
-- changed (customized, if you wil). Search for the word OPTION: in
-- capital letters.
--
-- Note that some aspects of the schema like uniqueness constraints
-- may be changed to best suit your requirements. Search for the tag
-- CONFIG and read the documentation you find there.
--
-- database have bioentries. That is about it.
-- we do not store different versions of a database as different dbids
-- (there is no concept of versions of database). There is a concept of
-- versions of entries. Versions of databases deserve their own table and
-- join to bioentry table for tracking with versions of entries
CREATE TABLE biodatabase (
biodatabase_id INT(10) UNSIGNED NOT NULL auto_increment,
name VARCHAR(128) BINARY NOT NULL,
authority VARCHAR(128),
description TEXT,
PRIMARY KEY (biodatabase_id),
UNIQUE (name)
) TYPE=INNODB;
CREATE INDEX db_auth on biodatabase(authority);
-- we could insist that taxa are NCBI taxon id, but on reflection I made this
-- an optional extra line, as many flat file formats do not have the NCBI id
--
-- no organelle/sub species
--
-- this corresponds to the node table of the NCBI taxonomy database
-- left_value, right_value implement a nested sets model;
-- see http://www.oreillynet.com/pub/a/network/2002/11/27/bioconf.html
-- or Joe Celko's 'SQL for smarties' for more information.
CREATE TABLE taxon (
taxon_id INT(10) UNSIGNED NOT NULL auto_increment,
ncbi_taxon_id INT(10),
parent_taxon_id INT(10) UNSIGNED,
node_rank VARCHAR(32),
genetic_code TINYINT UNSIGNED,
mito_genetic_code TINYINT UNSIGNED,
left_value INT(10) UNSIGNED,
right_value INT(10) UNSIGNED,
PRIMARY KEY (taxon_id),
UNIQUE (ncbi_taxon_id),
UNIQUE (left_value),
UNIQUE (right_value)
) TYPE=INNODB;
CREATE INDEX taxparent ON taxon(parent_taxon_id);
-- corresponds to the names table of the NCBI taxonomy databaase
CREATE TABLE taxon_name (
taxon_id INT(10) UNSIGNED NOT NULL,
name VARCHAR(255) BINARY NOT NULL,
name_class VARCHAR(32) BINARY NOT NULL,
UNIQUE (taxon_id,name,name_class)
) TYPE=INNODB;
CREATE INDEX taxnametaxonid ON taxon_name(taxon_id);
CREATE INDEX taxnamename ON taxon_name(name);
-- this is the namespace (controlled vocabulary) ontology terms live in
-- we chose to have a separate table for this instead of reusing biodatabase
CREATE TABLE ontology (
ontology_id INT(10) UNSIGNED NOT NULL auto_increment,
name VARCHAR(32) BINARY NOT NULL,
definition TEXT,
PRIMARY KEY (ontology_id),
UNIQUE (name)
) TYPE=INNODB;
-- any controlled vocab term, everything from full ontology
-- terms eg GO IDs to the various keys allowed as qualifiers
CREATE TABLE term (
term_id INT(10) UNSIGNED NOT NULL auto_increment,
name VARCHAR(255) BINARY NOT NULL,
definition TEXT,
identifier VARCHAR(40) BINARY,
is_obsolete CHAR(1),
ontology_id INT(10) UNSIGNED NOT NULL,
PRIMARY KEY (term_id),
UNIQUE (identifier),
-- CONFIG: uncomment exactly one of the two following lines. The
-- first one puts a unqiueness constraint on term name within an
-- ontology, which is a conservative approach. However, if you are
-- going to load GO and update it too, there are situations where
-- you'll run into problems with this constraint unless you delete
-- obsoleted terms (which has its own shortcomings, read the POD of
-- load_ontology.pl in bioperl-db). The second line includes the
-- obsoleteness into the uniqueness constraint.
-- UNIQUE (name,ontology_id)
UNIQUE (name,ontology_id,is_obsolete)
) TYPE=INNODB;
CREATE INDEX term_ont ON term(ontology_id);
-- ontology terms have synonyms, here is how to store them
-- Synonym is a reserved word in many RDBMSs, so the column synonym
-- may eventually be renamed to name.
CREATE TABLE term_synonym (
synonym VARCHAR(255) BINARY NOT NULL,
term_id INT(10) UNSIGNED NOT NULL,
PRIMARY KEY (term_id,synonym)
) TYPE=INNODB;
-- ontology terms to dbxref association: ontology terms have dbxrefs
CREATE TABLE term_dbxref (
term_id INT(10) UNSIGNED NOT NULL,
dbxref_id INT(10) UNSIGNED NOT NULL,
rank SMALLINT,
PRIMARY KEY (term_id, dbxref_id)
) TYPE=INNODB;
CREATE INDEX trmdbxref_dbxrefid ON term_dbxref(dbxref_id);
-- relationship between controlled vocabulary / ontology term
-- we use subject/predicate/object but this could also
-- be thought of as child/relationship-type/parent.
-- the subject/predicate/object naming is better as we
-- can think of the graph as composed of statements.
--
-- we also treat the relationshiptypes / predicates as
-- controlled terms in themselves; this is quite useful
-- as a lot of systems (eg GO) will soon require
-- ontologies of relationship types (eg subtle differences
-- in the partOf relationship)
--
-- this table probably won''t be filled for a while, the core
-- will just treat ontologies as flat lists of terms
CREATE TABLE term_relationship (
term_relationship_id INT(10) UNSIGNED NOT NULL auto_increment,
subject_term_id INT(10) UNSIGNED NOT NULL,
predicate_term_id INT(10) UNSIGNED NOT NULL,
object_term_id INT(10) UNSIGNED NOT NULL,
ontology_id INT(10) UNSIGNED NOT NULL,
PRIMARY KEY (term_relationship_id),
UNIQUE (subject_term_id,predicate_term_id,object_term_id,ontology_id)
) TYPE=INNODB;
CREATE INDEX trmrel_predicateid ON term_relationship(predicate_term_id);
CREATE INDEX trmrel_objectid ON term_relationship(object_term_id);
CREATE INDEX trmrel_ontid ON term_relationship(ontology_id);
-- CONFIG: you may want to add this for mysql because MySQL often is broken
-- with respect to using the composite index for the initial keys
-- CREATE INDEX ontrel_subjectid ON term_relationship(subject_term_id);
-- This lets one associate a single term with a term_relationship
-- effecively allowing us to treat triples as 1st class terms.
--
-- At this point this table is only supported in Biojava. If you want
-- to know more about the rationale and idea behind it, read the
-- following article that Mat Pocock posted to the mailing list:
-- http://www.open-bio.org/pipermail/biosql-l/2003-October/000455.html
CREATE TABLE term_relationship_term (
term_relationship_id INT(10) UNSIGNED NOT NULL,
term_id INT(10) UNSIGNED NOT NULL,
PRIMARY KEY ( term_relationship_id ),
UNIQUE ( term_id )
) TYPE=INNODB;
-- the infamous transitive closure table on ontology term relationships
-- this is a warehouse approach - you will need to update this regularly
--
-- the triple of (subject, predicate, object) is the same as for ontology
-- relationships, with the exception of predicate being the greatest common
-- denominator of the relationships types visited in the path (i.e., if
-- relationship type A is-a relationship type B, the greatest common
-- denominator for path containing both types A and B is B)
--
-- See the GO database or Chado schema for other (and possibly better
-- documented) implementations of the transitive closure table approach.
CREATE TABLE term_path (
term_path_id INT(10) UNSIGNED NOT NULL auto_increment,
subject_term_id INT(10) UNSIGNED NOT NULL,
predicate_term_id INT(10) UNSIGNED NOT NULL,
object_term_id INT(10) UNSIGNED NOT NULL,
ontology_id INT(10) UNSIGNED NOT NULL,
distance INT(10) UNSIGNED,
PRIMARY KEY (term_path_id),
UNIQUE (subject_term_id,predicate_term_id,object_term_id,ontology_id,distance)
) TYPE=INNODB;
CREATE INDEX trmpath_predicateid ON term_path(predicate_term_id);
CREATE INDEX trmpath_objectid ON term_path(object_term_id);
CREATE INDEX trmpath_ontid ON term_path(ontology_id);
-- CONFIG: you may want to add this for mysql because MySQL often is broken
-- with respect to using the composite index for the initial keys
-- CREATE INDEX trmpath_subjectid ON term_path(subject_term_id);
-- we can be a bioentry without a biosequence, but not visa-versa
-- most things are going to be keyed off bioentry_id
--
-- accession is the stable id, display_id is a potentially volatile,
-- human readable name.
--
-- Version may be unknown, may be undefined, or may not exist for a certain
-- accession or database (namespace). We require it here to avoid RDBMS-
-- dependend enforcement variants (version is in a compound alternative key),
-- and to simplify query construction for UK look-ups. If there is no version
-- the convention is to put 0 (zero) here. Likewise, a record with a version
-- of zero means the version is to be interpreted as NULL.
--
-- not all entries have a taxon, but many do.
-- one bioentry only has one taxon! (weirdo chimerias are not handled. tough)
--
-- Name maps to display_id in bioperl. We have a different column name
-- here to avoid confusion with the naming convention for foreign keys.
CREATE TABLE bioentry (
bioentry_id INT(10) UNSIGNED NOT NULL auto_increment,
biodatabase_id INT(10) UNSIGNED NOT NULL,
taxon_id INT(10) UNSIGNED,
name VARCHAR(40) NOT NULL,
accession VARCHAR(128) BINARY NOT NULL,
identifier VARCHAR(40) BINARY,
division VARCHAR(6),
description TEXT,
version SMALLINT UNSIGNED NOT NULL,
PRIMARY KEY (bioentry_id),
UNIQUE (accession,biodatabase_id,version),
-- CONFIG: uncomment one (and only one) of the two lines below. The
-- first puts a uniqueness constraint on the identifier column alone;
-- the other one puts a uniqueness constraint on identifier only
-- within a namespace.
-- UNIQUE (identifier)
UNIQUE (identifier, biodatabase_id)
) TYPE=INNODB;
CREATE INDEX bioentry_name ON bioentry(name);
CREATE INDEX bioentry_db ON bioentry(biodatabase_id);
CREATE INDEX bioentry_tax ON bioentry(taxon_id);
--
-- bioentry-bioentry relationships: these are typed
--
CREATE TABLE bioentry_relationship (
bioentry_relationship_id INT(10) UNSIGNED NOT NULL auto_increment,
object_bioentry_id INT(10) UNSIGNED NOT NULL,
subject_bioentry_id INT(10) UNSIGNED NOT NULL,
term_id INT(10) UNSIGNED NOT NULL,
rank INT(5),
PRIMARY KEY (bioentry_relationship_id),
UNIQUE (object_bioentry_id,subject_bioentry_id,term_id)
) TYPE=INNODB;
CREATE INDEX bioentryrel_trm ON bioentry_relationship(term_id);
CREATE INDEX bioentryrel_child ON bioentry_relationship(subject_bioentry_id);
-- CONFIG: you may want to add this for mysql because MySQL often is broken
-- with respect to using the composite index for the initial keys
-- CREATE INDEX bioentryrel_parent ON bioentry_relationship(object_bioentry_id);
-- for deep (depth > 1) bioentry relationship trees we need a transitive
-- closure table too
CREATE TABLE bioentry_path (
object_bioentry_id INT(10) UNSIGNED NOT NULL,
subject_bioentry_id INT(10) UNSIGNED NOT NULL,
term_id INT(10) UNSIGNED NOT NULL,
distance INT(10) UNSIGNED,
UNIQUE (object_bioentry_id,subject_bioentry_id,term_id,distance)
) TYPE=INNODB;
CREATE INDEX bioentrypath_trm ON bioentry_path(term_id);
CREATE INDEX bioentrypath_child ON bioentry_path(subject_bioentry_id);
-- CONFIG: you may want to add this for mysql because MySQL often is broken
-- with respect to using the composite index for the initial keys
-- CREATE INDEX bioentrypath_parent ON bioentry_path(object_bioentry_id);
-- some bioentries will have a sequence
-- biosequence because sequence is sometimes a reserved word
CREATE TABLE biosequence (
bioentry_id INT(10) UNSIGNED NOT NULL,
version SMALLINT,
length INT(10),
alphabet VARCHAR(10),
seq LONGTEXT,
PRIMARY KEY (bioentry_id)
) TYPE=INNODB;
-- CONFIG: add these only if you want them:
-- ALTER TABLE biosequence ADD COLUMN ( isoelec_pt NUMERIC(4,2) );
-- ALTER TABLE biosequence ADD COLUMN ( mol_wgt DOUBLE PRECISION );
-- ALTER TABLE biosequence ADD COLUMN ( perc_gc DOUBLE PRECISION );
-- database cross-references (e.g., GenBank:AC123456.1)
--
-- Version may be unknown, may be undefined, or may not exist for a certain
-- accession or database (namespace). We require it here to avoid RDBMS-
-- dependend enforcement variants (version is in a compound alternative key),
-- and to simplify query construction for UK look-ups. If there is no version
-- the convention is to put 0 (zero) here. Likewise, a record with a version
-- of zero means the version is to be interpreted as NULL.
--
CREATE TABLE dbxref (
dbxref_id INT(10) UNSIGNED NOT NULL auto_increment,
dbname VARCHAR(40) BINARY NOT NULL,
accession VARCHAR(128) BINARY NOT NULL,
version SMALLINT UNSIGNED NOT NULL,
PRIMARY KEY (dbxref_id),
UNIQUE(accession, dbname, version)
) TYPE=INNODB;
CREATE INDEX dbxref_db ON dbxref(dbname);
-- for roundtripping embl/genbank, we need to have the "optional ID"
-- for the dbxref.
--
-- another use of this table could be for storing
-- descriptive text for a dbxref. for example, we may want to
-- know stuff about the interpro accessions we store (without
-- importing all of interpro), so we can attach the text
-- description as a synonym
CREATE TABLE dbxref_qualifier_value (
dbxref_id INT(10) UNSIGNED NOT NULL,
term_id INT(10) UNSIGNED NOT NULL,
rank SMALLINT NOT NULL DEFAULT 0,
value TEXT,
PRIMARY KEY (dbxref_id,term_id,rank)
) TYPE=INNODB;
CREATE INDEX dbxrefqual_dbx ON dbxref_qualifier_value(dbxref_id);
CREATE INDEX dbxrefqual_trm ON dbxref_qualifier_value(term_id);
-- Direct dblinks. It is tempting to do this
-- from bioentry_id to bioentry_id. But that wont work
-- during updates of one database - we will have to edit
-- this table each time. Better to do the join through accession
-- and db each time. Should be almost as cheap
CREATE TABLE bioentry_dbxref (
bioentry_id INT(10) UNSIGNED NOT NULL,
dbxref_id INT(10) UNSIGNED NOT NULL,
rank SMALLINT,
PRIMARY KEY (bioentry_id,dbxref_id)
) TYPE=INNODB;
CREATE INDEX dblink_dbx ON bioentry_dbxref(dbxref_id);
-- We can have multiple references per bioentry, but one reference
-- can also be used for the same bioentry.
--
-- No two references can reference the same reference database entry
-- (dbxref_id). This is where the MEDLINE id goes: PUBMED:123456.
CREATE TABLE reference (
reference_id INT(10) UNSIGNED NOT NULL auto_increment,
dbxref_id INT(10) UNSIGNED,
location TEXT NOT NULL,
title TEXT,
authors TEXT,
crc VARCHAR(32),
PRIMARY KEY (reference_id),
UNIQUE (dbxref_id),
UNIQUE (crc)
) TYPE=INNODB;
-- bioentry to reference associations
CREATE TABLE bioentry_reference (
bioentry_id INT(10) UNSIGNED NOT NULL,
reference_id INT(10) UNSIGNED NOT NULL,
start_pos INT(10),
end_pos INT(10),
rank SMALLINT NOT NULL DEFAULT 0,
PRIMARY KEY(bioentry_id,reference_id,rank)
) TYPE=INNODB;
CREATE INDEX bioentryref_ref ON bioentry_reference(reference_id);
-- We can have multiple comments per seqentry, and
-- comments can have embedded '\n' characters
CREATE TABLE comment (
comment_id INT(10) UNSIGNED NOT NULL auto_increment,
bioentry_id INT(10) UNSIGNED NOT NULL,
comment_text TEXT NOT NULL,
rank SMALLINT NOT NULL DEFAULT 0,
PRIMARY KEY (comment_id),
UNIQUE(bioentry_id, rank)
) TYPE=INNODB;
-- tag/value and ontology term annotation for bioentries goes here
CREATE TABLE bioentry_qualifier_value (
bioentry_id INT(10) UNSIGNED NOT NULL,
term_id INT(10) UNSIGNED NOT NULL,
value TEXT,
rank INT(5) NOT NULL DEFAULT 0,
UNIQUE (bioentry_id,term_id,rank)
) TYPE=INNODB;
CREATE INDEX bioentryqual_trm ON bioentry_qualifier_value(term_id);
-- feature table. We cleanly handle
-- - simple locations
-- - split locations
-- - split locations on remote sequences
CREATE TABLE seqfeature (
seqfeature_id INT(10) UNSIGNED NOT NULL auto_increment,
bioentry_id INT(10) UNSIGNED NOT NULL,
type_term_id INT(10) UNSIGNED NOT NULL,
source_term_id INT(10) UNSIGNED NOT NULL,
display_name VARCHAR(64),
rank SMALLINT UNSIGNED NOT NULL DEFAULT 0,
PRIMARY KEY (seqfeature_id),
UNIQUE (bioentry_id,type_term_id,source_term_id,rank)
) TYPE=INNODB;
CREATE INDEX seqfeature_trm ON seqfeature(type_term_id);
CREATE INDEX seqfeature_fsrc ON seqfeature(source_term_id);
-- you may want to add this for mysql because MySQL often is broken with
-- respect to using the composite index for the initial keys
-- CREATE INDEX seqfeature_bioentryid ON seqfeature(bioentry_id);
-- seqfeatures can be arranged in containment hierarchies.
-- one can imagine storing other relationships between features,
-- in this case the term_id can be used to type the relationship
CREATE TABLE seqfeature_relationship (
seqfeature_relationship_id INT(10) UNSIGNED NOT NULL auto_increment,
object_seqfeature_id INT(10) UNSIGNED NOT NULL,
subject_seqfeature_id INT(10) UNSIGNED NOT NULL,
term_id INT(10) UNSIGNED NOT NULL,
rank INT(5),
PRIMARY KEY (seqfeature_relationship_id),
UNIQUE (object_seqfeature_id,subject_seqfeature_id,term_id)
) TYPE=INNODB;
CREATE INDEX seqfeaturerel_trm ON seqfeature_relationship(term_id);
CREATE INDEX seqfeaturerel_child ON seqfeature_relationship(subject_seqfeature_id);
-- CONFIG: you may want to add this for mysql because MySQL often is broken
-- with respect to using the composite index for the initial keys
-- CREATE INDEX seqfeaturerel_parent ON seqfeature_relationship(object_seqfeature_id);
-- for deep (depth > 1) seqfeature relationship trees we need a transitive
-- closure table too
CREATE TABLE seqfeature_path (
object_seqfeature_id INT(10) UNSIGNED NOT NULL,
subject_seqfeature_id INT(10) UNSIGNED NOT NULL,
term_id INT(10) UNSIGNED NOT NULL,
distance INT(10) UNSIGNED,
UNIQUE (object_seqfeature_id,subject_seqfeature_id,term_id,distance)
) TYPE=INNODB;
CREATE INDEX seqfeaturepath_trm ON seqfeature_path(term_id);
CREATE INDEX seqfeaturepath_child ON seqfeature_path(subject_seqfeature_id);
-- CONFIG: you may want to add this for mysql because MySQL often is broken
-- with respect to using the composite index for the initial keys
-- CREATE INDEX seqfeaturerel_parent ON seqfeature_path(object_seqfeature_id);
-- tag/value associations - or ontology annotations
CREATE TABLE seqfeature_qualifier_value (
seqfeature_id INT(10) UNSIGNED NOT NULL,
term_id INT(10) UNSIGNED NOT NULL,
rank SMALLINT NOT NULL DEFAULT 0,
value TEXT NOT NULL,
PRIMARY KEY (seqfeature_id,term_id,rank)
) TYPE=INNODB;
CREATE INDEX seqfeaturequal_trm ON seqfeature_qualifier_value(term_id);
-- DBXrefs for features. This is necessary for genome oriented viewpoints,
-- where you have a few have long sequences (contigs, or chromosomes) with many
-- features on them. In that case the features are the semantic scope for
-- their annotation bundles, not the bioentry they are attached to.
CREATE TABLE seqfeature_dbxref (
seqfeature_id INT(10) UNSIGNED NOT NULL,
dbxref_id INT(10) UNSIGNED NOT NULL,
rank SMALLINT,
PRIMARY KEY (seqfeature_id,dbxref_id)
) TYPE=INNODB;
CREATE INDEX feadblink_dbx ON seqfeature_dbxref(dbxref_id);
-- basically we model everything as potentially having
-- any number of locations, ie, a split location. SimpleLocations
-- just have one location. We need to have a location id for the qualifier
-- associations of fuzzy locations.
-- please do not try to model complex assemblies with this thing. It wont
-- work. Check out the ensembl schema for this.
-- we allow nulls for start/end - this is useful for fuzzies as
-- standard range queries will not be included
-- for remote locations, the join to make is to DBXref
-- the FK to term is a possibility to store the type of the
-- location for determining in one hit whether it's a fuzzy or not
CREATE TABLE location (
location_id INT(10) UNSIGNED NOT NULL auto_increment,
seqfeature_id INT(10) UNSIGNED NOT NULL,
dbxref_id INT(10) UNSIGNED,
term_id INT(10) UNSIGNED,
start_pos INT(10),
end_pos INT(10),
strand TINYINT NOT NULL DEFAULT 0,
rank SMALLINT NOT NULL DEFAULT 0,
PRIMARY KEY (location_id),
UNIQUE (seqfeature_id, rank)
) TYPE=INNODB;
CREATE INDEX seqfeatureloc_start ON location(start_pos, end_pos);
CREATE INDEX seqfeatureloc_dbx ON location(dbxref_id);
CREATE INDEX seqfeatureloc_trm ON location(term_id);
-- location qualifiers - mainly intended for fuzzies but anything
-- can go in here
-- some controlled vocab terms have slots;
-- fuzzies could be modeled as min_start(5), max_start(5)
--
-- there is no restriction on extending the fuzzy ontology
-- for your own nefarious aims, although the bio* apis will
-- most likely ignore these
CREATE TABLE location_qualifier_value (
location_id INT(10) UNSIGNED NOT NULL,
term_id INT(10) UNSIGNED NOT NULL,
value VARCHAR(255) NOT NULL,
int_value INT(10),
PRIMARY KEY (location_id,term_id)
) TYPE=INNODB;
CREATE INDEX locationqual_trm ON location_qualifier_value(term_id);
--
-- Create the foreign key constraints
--
-- ontology term
ALTER TABLE term ADD CONSTRAINT FKont_term
FOREIGN KEY (ontology_id) REFERENCES ontology(ontology_id)
ON DELETE CASCADE;
-- term synonyms
ALTER TABLE term_synonym ADD CONSTRAINT FKterm_syn
FOREIGN KEY (term_id) REFERENCES term(term_id)
ON DELETE CASCADE;
-- term_dbxref
ALTER TABLE term_dbxref ADD CONSTRAINT FKdbxref_trmdbxref
FOREIGN KEY (dbxref_id) REFERENCES dbxref(dbxref_id)
ON DELETE CASCADE;
ALTER TABLE term_dbxref ADD CONSTRAINT FKterm_trmdbxref
FOREIGN KEY (term_id) REFERENCES term(term_id)
ON DELETE CASCADE;
-- term_relationship
ALTER TABLE term_relationship ADD CONSTRAINT FKtrmsubject_trmrel
FOREIGN KEY (subject_term_id) REFERENCES term(term_id)
ON DELETE CASCADE;
ALTER TABLE term_relationship ADD CONSTRAINT FKtrmpredicate_trmrel
FOREIGN KEY (predicate_term_id) REFERENCES term(term_id)
ON DELETE CASCADE;
ALTER TABLE term_relationship ADD CONSTRAINT FKtrmobject_trmrel
FOREIGN KEY (object_term_id) REFERENCES term(term_id)
ON DELETE CASCADE;
ALTER TABLE term_relationship ADD CONSTRAINT FKterm_trmrel
FOREIGN KEY (ontology_id) REFERENCES ontology(ontology_id)
ON DELETE CASCADE;
-- term_relationship_term
ALTER TABLE term_relationship_term ADD CONSTRAINT FKtrmrel_trmreltrm
FOREIGN KEY (term_relationship_id) REFERENCES term_relationship(term_relationship_id)
ON DELETE CASCADE;
ALTER TABLE term_relationship_term ADD CONSTRAINT FKtrm_trmreltrm
FOREIGN KEY (term_id) REFERENCES term(term_id)
ON DELETE CASCADE;
-- term_path
ALTER TABLE term_path ADD CONSTRAINT FKtrmsubject_trmpath
FOREIGN KEY (subject_term_id) REFERENCES term(term_id)
ON DELETE CASCADE;
ALTER TABLE term_path ADD CONSTRAINT FKtrmpredicate_trmpath
FOREIGN KEY (predicate_term_id) REFERENCES term(term_id)
ON DELETE CASCADE;
ALTER TABLE term_path ADD CONSTRAINT FKtrmobject_trmpath
FOREIGN KEY (object_term_id) REFERENCES term(term_id)
ON DELETE CASCADE;
ALTER TABLE term_path ADD CONSTRAINT FKontology_trmpath
FOREIGN KEY (ontology_id) REFERENCES ontology(ontology_id)
ON DELETE CASCADE;
-- taxon, taxon_name
-- unfortunately, we can't constrain parent_taxon_id as it is violated
-- occasionally by the downloads available from NCBI
-- ALTER TABLE taxon ADD CONSTRAINT FKtaxon_taxon
-- FOREIGN KEY (parent_taxon_id) REFERENCES taxon(taxon_id);
ALTER TABLE taxon_name ADD CONSTRAINT FKtaxon_taxonname
FOREIGN KEY (taxon_id) REFERENCES taxon(taxon_id)
ON DELETE CASCADE;
-- bioentry
ALTER TABLE bioentry ADD CONSTRAINT FKtaxon_bioentry
FOREIGN KEY (taxon_id) REFERENCES taxon(taxon_id);
ALTER TABLE bioentry ADD CONSTRAINT FKbiodatabase_bioentry
FOREIGN KEY (biodatabase_id) REFERENCES biodatabase(biodatabase_id);
-- bioentry_relationship
ALTER TABLE bioentry_relationship ADD CONSTRAINT FKterm_bioentryrel
FOREIGN KEY (term_id) REFERENCES term(term_id);
ALTER TABLE bioentry_relationship ADD CONSTRAINT FKparentent_bioentryrel
FOREIGN KEY (object_bioentry_id) REFERENCES bioentry(bioentry_id)
ON DELETE CASCADE;
ALTER TABLE bioentry_relationship ADD CONSTRAINT FKchildent_bioentryrel
FOREIGN KEY (subject_bioentry_id) REFERENCES bioentry(bioentry_id)
ON DELETE CASCADE;
-- bioentry_path
ALTER TABLE bioentry_path ADD CONSTRAINT FKterm_bioentrypath
FOREIGN KEY (term_id) REFERENCES term(term_id);
ALTER TABLE bioentry_path ADD CONSTRAINT FKparentent_bioentrypath
FOREIGN KEY (object_bioentry_id) REFERENCES bioentry(bioentry_id)
ON DELETE CASCADE;
ALTER TABLE bioentry_path ADD CONSTRAINT FKchildent_bioentrypath
FOREIGN KEY (subject_bioentry_id) REFERENCES bioentry(bioentry_id)
ON DELETE CASCADE;
-- biosequence
ALTER TABLE biosequence ADD CONSTRAINT FKbioentry_bioseq
FOREIGN KEY (bioentry_id) REFERENCES bioentry(bioentry_id)
ON DELETE CASCADE;
-- comment
ALTER TABLE comment ADD CONSTRAINT FKbioentry_comment
FOREIGN KEY(bioentry_id) REFERENCES bioentry(bioentry_id)
ON DELETE CASCADE;
-- bioentry_dbxref
ALTER TABLE bioentry_dbxref ADD CONSTRAINT FKbioentry_dblink
FOREIGN KEY (bioentry_id) REFERENCES bioentry(bioentry_id)
ON DELETE CASCADE;
ALTER TABLE bioentry_dbxref ADD CONSTRAINT FKdbxref_dblink
FOREIGN KEY (dbxref_id) REFERENCES dbxref(dbxref_id)
ON DELETE CASCADE;
-- dbxref_qualifier_value
ALTER TABLE dbxref_qualifier_value ADD CONSTRAINT FKtrm_dbxrefqual
FOREIGN KEY (term_id) REFERENCES term(term_id);
ALTER TABLE dbxref_qualifier_value ADD CONSTRAINT FKdbxref_dbxrefqual
FOREIGN KEY (dbxref_id) REFERENCES dbxref(dbxref_id)
ON DELETE CASCADE;
-- bioentry_reference
ALTER TABLE bioentry_reference ADD CONSTRAINT FKbioentry_entryref
FOREIGN KEY (bioentry_id) REFERENCES bioentry(bioentry_id)
ON DELETE CASCADE;
ALTER TABLE bioentry_reference ADD CONSTRAINT FKreference_entryref
FOREIGN KEY (reference_id) REFERENCES reference(reference_id)
ON DELETE CASCADE;
-- bioentry_qualifier_value
ALTER TABLE bioentry_qualifier_value ADD CONSTRAINT FKbioentry_entqual
FOREIGN KEY (bioentry_id) REFERENCES bioentry(bioentry_id)
ON DELETE CASCADE;
ALTER TABLE bioentry_qualifier_value ADD CONSTRAINT FKterm_entqual
FOREIGN KEY (term_id) REFERENCES term(term_id);
-- reference
ALTER TABLE reference ADD CONSTRAINT FKdbxref_reference
FOREIGN KEY ( dbxref_id ) REFERENCES dbxref ( dbxref_id ) ;
-- seqfeature
ALTER TABLE seqfeature ADD CONSTRAINT FKterm_seqfeature
FOREIGN KEY (type_term_id) REFERENCES term(term_id);
ALTER TABLE seqfeature ADD CONSTRAINT FKsourceterm_seqfeature
FOREIGN KEY (source_term_id) REFERENCES term(term_id);
ALTER TABLE seqfeature ADD CONSTRAINT FKbioentry_seqfeature
FOREIGN KEY (bioentry_id) REFERENCES bioentry(bioentry_id)
ON DELETE CASCADE;
-- seqfeature_relationship
ALTER TABLE seqfeature_relationship ADD CONSTRAINT FKterm_seqfeatrel
FOREIGN KEY (term_id) REFERENCES term(term_id);
ALTER TABLE seqfeature_relationship ADD CONSTRAINT FKparentfeat_seqfeatrel
FOREIGN KEY (object_seqfeature_id) REFERENCES seqfeature(seqfeature_id)
ON DELETE CASCADE;
ALTER TABLE seqfeature_relationship ADD CONSTRAINT FKchildfeat_seqfeatrel
FOREIGN KEY (subject_seqfeature_id) REFERENCES seqfeature(seqfeature_id)
ON DELETE CASCADE;
-- seqfeature_path
ALTER TABLE seqfeature_path ADD CONSTRAINT FKterm_seqfeatpath
FOREIGN KEY (term_id) REFERENCES term(term_id);
ALTER TABLE seqfeature_path ADD CONSTRAINT FKparentfeat_seqfeatpath
FOREIGN KEY (object_seqfeature_id) REFERENCES seqfeature(seqfeature_id)
ON DELETE CASCADE;
ALTER TABLE seqfeature_path ADD CONSTRAINT FKchildfeat_seqfeatpath
FOREIGN KEY (subject_seqfeature_id) REFERENCES seqfeature(seqfeature_id)
ON DELETE CASCADE;
-- seqfeature_qualifier_value
ALTER TABLE seqfeature_qualifier_value ADD CONSTRAINT FKterm_featqual
FOREIGN KEY (term_id) REFERENCES term(term_id);
ALTER TABLE seqfeature_qualifier_value ADD CONSTRAINT FKseqfeature_featqual
FOREIGN KEY (seqfeature_id) REFERENCES seqfeature(seqfeature_id)
ON DELETE CASCADE;
-- seqfeature_dbxref
ALTER TABLE seqfeature_dbxref ADD CONSTRAINT FKseqfeature_feadblink
FOREIGN KEY (seqfeature_id) REFERENCES seqfeature(seqfeature_id)
ON DELETE CASCADE;
ALTER TABLE seqfeature_dbxref ADD CONSTRAINT FKdbxref_feadblink
FOREIGN KEY (dbxref_id) REFERENCES dbxref(dbxref_id)
ON DELETE CASCADE;
-- location
ALTER TABLE location ADD CONSTRAINT FKseqfeature_location
FOREIGN KEY (seqfeature_id) REFERENCES seqfeature(seqfeature_id)
ON DELETE CASCADE;
ALTER TABLE location ADD CONSTRAINT FKdbxref_location
FOREIGN KEY (dbxref_id) REFERENCES dbxref(dbxref_id);
ALTER TABLE location ADD CONSTRAINT FKterm_featloc
FOREIGN KEY (term_id) REFERENCES term(term_id);
-- location_qualifier_value
ALTER TABLE location_qualifier_value ADD CONSTRAINT FKfeatloc_locqual
FOREIGN KEY (location_id) REFERENCES location(location_id)
ON DELETE CASCADE;
ALTER TABLE location_qualifier_value ADD CONSTRAINT FKterm_locqual
FOREIGN KEY (term_id) REFERENCES term(term_id);
|