File: test_GenomeDiagram.py

package info (click to toggle)
python-biopython 1.54-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 25,400 kB
  • ctags: 10,975
  • sloc: python: 116,757; xml: 33,167; ansic: 8,622; sql: 1,488; makefile: 147
file content (789 lines) | stat: -rwxr-xr-x 34,366 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
#!/usr/bin/env python
# This code is part of the Biopython distribution and governed by its
# license.  Please see the LICENSE file that should have been included
# as part of this package.
"""Tests for GenomeDiagram general functionality.
"""

##########
# IMPORTS

# Builtins
import os
import unittest
import math

# Do we have ReportLab?  Raise error if not present.
from Bio import MissingExternalDependencyError
try:
    from reportlab.lib import colors
    from reportlab.pdfbase import pdfmetrics
    from reportlab.pdfbase.ttfonts import TTFont
    from reportlab.lib.units import cm
except ImportError:
    raise MissingExternalDependencyError(\
            "Install reportlab if you want to use Bio.Graphics.")

# Biopython core
from Bio import SeqIO
from Bio.SeqFeature import SeqFeature, FeatureLocation
from Bio import SeqUtils

# Bio.Graphics.GenomeDiagram
from Bio.Graphics.GenomeDiagram import FeatureSet, GraphSet, Track, Diagram
#from Bio.Graphics.GenomeDiagram.Utilities import *

#Currently private, but we test them here:
from Bio.Graphics.GenomeDiagram._Graph import GraphData
from Bio.Graphics.GenomeDiagram._Colors import ColorTranslator


###############################################################################
# Utility functions for graph plotting, originally in GenomeDiagram.Utilities #
# See Bug 2705 for discussion on where to put these functions in Biopython... #
###############################################################################
def apply_to_window(sequence, window_size, function, step=None):
    """ apply_to_window(sequence, window_size, function) -> [(int, float),(int, float),...]

        o sequence      Bio.Seq.Seq object

        o window_size   Int describing the length of sequence to consider

        o step          Int describing the step to take between windows
                        (default = window_size/2)

        o function      Method or function that accepts a Bio.Seq.Seq object
                        as its sole argument and returns a single value

        Returns a list of (position, value) tuples for fragments of the passed
        sequence of length window_size (stepped by step), calculated by the
        passed function.  Returned positions are the midpoint of each window.
    """
    seqlen = len(sequence)      # Total length of sequence to be used
    if step is None:    # No step specified, so use half window-width or 1 if larger
        step = max(window_size/2, 1)
    else:               # Use specified step, or 1 if greater
        step = max(step, 1)

    results = []    # Holds (position, value) results

    # Perform the passed function on as many windows as possible, short of
    # overrunning the sequence
    pos = 0
    while pos < seqlen-window_size+1:
        # Obtain sequence fragment
        start, middle, end = pos, (pos+window_size+pos)/2, pos+window_size
        fragment = sequence[start:end]
        # Apply function to the sequence fragment
        value = function(fragment)
        results.append((middle, value)) # Add results to list
        # Advance to next fragment
        pos += step

    # Use the last available window on the sequence, even if it means
    # re-covering old ground
    if pos != seqlen - window_size:
        # Obtain sequence fragment
        pos = seqlen - window_size
        start, middle, end = pos, (pos+window_size+pos)/2, pos+window_size
        fragment = sequence[start:end]
        # Apply function to sequence fragment
        value = function(fragment)
        results.append((middle, value)) # Add results to list
        
    # Check on last sequence
    #print fragment
    #print seq[-100:]
    return results      # Return the list of (position, value) results

def calc_gc_content(sequence):
    """ calc_gc_content(sequence)

        o sequence  A Bio.Seq.Seq object

        Returns the % G+C content in a passed sequence
    """
    d = {}
    for nt in ['A','T','G','C']:
        d[nt] = sequence.count(nt) + sequence.count(nt.lower())
    gc = d.get('G',0) + d.get('C',0)

    if gc == 0: return 0
    #print gc*100.0/(d['A'] +d['T'] + gc)
    return gc*1./(d['A'] +d['T'] + gc)


def calc_at_content(sequence):
    """ calc_at_content(sequence)

        o sequence  A Bio.Seq.Seq object

        Returns the % A+T content in a passed sequence
    """
    seq = sequence.data
    d = {}
    for nt in ['A','T','G','C']:
        d[nt] = sequence.count(nt) + sequence.count(nt.lower())
    at = d.get('A',0) + d.get('T',0)

    if at == 0: return 0
    return at*1./(d['G'] +d['G'] + at)


def calc_gc_skew(sequence):
    """ calc_gc_skew(sequence)

        o sequence   A Bio.Seq.Seq object

        Returns the (G-C)/(G+C) GC skew in a passed sequence
    """
    g = sequence.count('G') + sequence.count('g')
    c = sequence.count('C') + sequence.count('c')
    if g+c == 0:
        return 0.0 #TODO - return NaN or None here?
    else:
        return (g-c)/float(g+c)


def calc_at_skew(sequence):
    """ calc_at_skew(sequence)

        o sequence   A Bio.Seq.Seq object

        Returns the (A-T)/(A+T) AT skew in a passed sequence
    """
    a = sequence.count('A') + sequence.count('a')
    t = sequence.count('T') + sequence.count('t')
    if a+t == 0:
        return 0.0 #TODO - return NaN or None here?
    else:
        return (a-t)/float(a+t)

def calc_dinucleotide_counts(sequence):
    """Returns the total count of di-nucleotides repeats (e.g. "AA", "CC").

    This is purely for the sake of generating some non-random sequence
    based score for plotting, with no expected biological meaning.

    NOTE - Only considers same case pairs.
    NOTE - "AA" scores 1, "AAA" scores 2, "AAAA" scores 3 etc.
    """
    total = 0
    for letter in "ACTGUactgu":
        total += sequence.count(letter+letter)
    return total
    

###############################################################################
# End of utility functions for graph plotting                                 #
###############################################################################

# Tests
class TrackTest(unittest.TestCase):
    # TODO Bring code from Track.py, unsure about what test does
    pass

class ColorsTest(unittest.TestCase):
    def test_color_conversions(self):
        """Test color translations.
        """
        translator = ColorTranslator()
        
        # Does the translate method correctly convert the passed argument?
        assert translator.float1_color((0.5, 0.5, 0.5)) == translator.translate((0.5, 0.5, 0.5)), \
            "Did not correctly translate colour from floating point RGB tuple"
        assert translator.int255_color((1, 75, 240)) == translator.translate((1, 75, 240)), \
            "Did not correctly translate colour from integer RGB tuple"
        assert translator.artemis_color(7) == translator.translate(7), \
            "Did not correctly translate colour from Artemis colour scheme"                        
        assert translator.scheme_color(2) == translator.translate(2), \
            "Did not correctly translate colour from user-defined colour scheme"

            
class GraphTest(unittest.TestCase):
    def test_limits(self):
        """Check line graphs."""
        #TODO - Fix GD so that the same min/max is used for all three lines?
        points = 1000
        scale = math.pi * 2.0 / points
        data1 = [math.sin(x*scale) for x in range(points)]
        data2 = [math.cos(x*scale) for x in range(points)]
        data3 = [2*math.sin(2*x*scale) for x in range(points)]
        
        gdd = Diagram('Test Diagram', circular=False,
                      y=0.01, yt=0.01, yb=0.01,
                      x=0.01, xl=0.01, xr=0.01)
        gdt_data = gdd.new_track(1, greytrack=False)
        gds_data = gdt_data.new_set("graph")
        for data_values, name, color in zip([data1,data2,data3],
                                            ["sin", "cos", "2sin2"],
                                            ["red","green","blue"]):
            data = zip(range(points), data_values)
            gds_data.new_graph(data, "", style="line",
                               color = color, altcolor = color,
                               center = 0)

        gdd.draw(format='linear',
                 tracklines=False,
                 pagesize=(15*cm,15*cm),
                 fragments=1,
                 start=0, end=points)
        gdd.write(os.path.join('Graphics', "line_graph.pdf"), "pdf")
        #Circular diagram - move tracks to make an empty space in the middle
        for track_number in gdd.tracks.keys():
            gdd.move_track(track_number,track_number+1)
        gdd.draw(tracklines=False,
                 pagesize=(15*cm,15*cm),
                 circular=True, #Data designed to be periodic
                 start=0, end=points)
        gdd.write(os.path.join('Graphics', "line_graph_c.pdf"), "pdf")
        
    def test_slicing(self):
        """Check GraphData slicing."""
        gd = GraphData()
        gd.set_data([(1, 10), (5, 15), (20, 40)])
        gd.add_point((10, 20))
        
        assert gd[4:16] == [(5, 15), (10, 20)], \
                "Unable to insert and retrieve points correctly"


class LabelTest(unittest.TestCase):
    """Check label positioning."""
    def setUp(self):
        self.gdd = Diagram('Test Diagram', circular=False,
                           y=0.01, yt=0.01, yb=0.01,
                           x=0.01, xl=0.01, xr=0.01)

    def finish(self, name, circular=True):
        #And draw it...
        tracks = len(self.gdd.tracks)
        #Work arround the page orientation code being too clever
        #and flipping the h & w round:
        if tracks <= 3:
            orient = "landscape"
        else:
            orient = "portrait"
        self.gdd.draw(format='linear', orientation=orient,
                      tracklines=False,
                      pagesize=(15*cm,5*cm*tracks),
                      fragments=1,
                      start=0, end=400)
        self.gdd.write(os.path.join('Graphics', name+".pdf"), "pdf")
        #For the tutorial this might be useful:
        #self.gdd.write(os.path.join('Graphics', name+".png"), "png")
        if circular:
            #Circular diagram - move tracks to make an empty space in the middle
            for track_number in self.gdd.tracks.keys():
                self.gdd.move_track(track_number,track_number+1)
            self.gdd.draw(tracklines=False,
                          pagesize=(15*cm,15*cm),
                          fragments=1,
                          start=0, end=400)
            self.gdd.write(os.path.join('Graphics', name+"_c.pdf"), "pdf")
    
    def add_track_with_sigils(self, **kwargs):
        self.gdt_features = self.gdd.new_track(1, greytrack=False)
        self.gds_features = self.gdt_features.new_set()
        for i in range(18):
            start = int((400 * i)/18.0)
            end = start + 17
            if i % 3 == 0:
                strand=None
                name = "Strandless"
                color=colors.orange
            elif i % 3 == 1:
                strand=+1
                name="Forward"
                color=colors.red
            else:
                strand = -1
                name="Reverse"
                color=colors.blue
            feature = SeqFeature(FeatureLocation(start, end), strand=strand)
            self.gds_features.add_feature(feature, name=name,
                                          color=color, label=True, **kwargs)

    def test_label_default(self):
        """Feature labels - default."""
        self.add_track_with_sigils()
        self.finish("labels_default")

class SigilsTest(unittest.TestCase):
    """Check the different feature sigils.

    These figures are intended to be used in the Tutorial..."""
    def setUp(self):
        self.gdd = Diagram('Test Diagram', circular=False,
                           y=0.01, yt=0.01, yb=0.01,
                           x=0.01, xl=0.01, xr=0.01)

    def add_track_with_sigils(self, **kwargs):
        #Add a track of features,
        self.gdt_features = self.gdd.new_track(1, greytrack=False)
        #We'll just use one feature set for these features,
        self.gds_features = self.gdt_features.new_set()
        #Add three features to show the strand options,
        feature = SeqFeature(FeatureLocation(25, 125), strand=+1)
        self.gds_features.add_feature(feature, name="Forward", **kwargs)
        feature = SeqFeature(FeatureLocation(150, 250), strand=None)
        self.gds_features.add_feature(feature, name="Strandless", **kwargs)
        feature = SeqFeature(FeatureLocation(275, 375), strand=-1)
        self.gds_features.add_feature(feature, name="Reverse", **kwargs)

    def finish(self, name, circular=True):
        #And draw it...
        tracks = len(self.gdd.tracks)
        #Work arround the page orientation code being too clever
        #and flipping the h & w round:
        if tracks <= 3:
            orient = "landscape"
        else:
            orient = "portrait"
        self.gdd.draw(format='linear', orientation=orient,
                      tracklines=False,
                      pagesize=(15*cm,5*cm*tracks),
                      fragments=1,
                      start=0, end=400)
        self.gdd.write(os.path.join('Graphics', name+".pdf"), "pdf")
        #For the tutorial this might be useful:
        #self.gdd.write(os.path.join('Graphics', name+".png"), "png")
        if circular:
            #Circular diagram - move tracks to make an empty space in the middle
            for track_number in self.gdd.tracks.keys():
                self.gdd.move_track(track_number,track_number+1)
            self.gdd.draw(tracklines=False,
                          pagesize=(15*cm,15*cm),
                          fragments=1,
                          start=0, end=400)
            self.gdd.write(os.path.join('Graphics', name+"_c.pdf"), "pdf")

    def test_labels(self):
        """Feature labels."""
        self.add_track_with_sigils(label=True)
        self.add_track_with_sigils(label=True, color="green",
                                   label_size=25, label_angle=0)
        self.add_track_with_sigils(label=True, color="purple",
                                   label_position="end",
                                   label_size=4, label_angle=90)
        self.add_track_with_sigils(label=True, color="blue",
                                   label_position="middle",
                                   label_size=6, label_angle=-90)
        self.assertEqual(len(self.gdd.tracks), 4)
        self.finish("GD_sigil_labels", circular=False)

    def test_arrow_shafts(self):
        """Feature arrow sigils, varying shafts."""
        self.add_track_with_sigils(sigil="ARROW")
        self.add_track_with_sigils(sigil="ARROW", color="brown",
                                   arrowshaft_height=1.0)
        self.add_track_with_sigils(sigil="ARROW", color="teal",
                                   arrowshaft_height=0.2)
        self.add_track_with_sigils(sigil="ARROW", color="darkgreen",
                                   arrowshaft_height=0.1)
        self.assertEqual(len(self.gdd.tracks), 4)
        self.finish("GD_sigil_arrow_shafts")        

    def test_arrow_heads(self):
        """Feature arrow sigils, varying heads."""
        self.add_track_with_sigils(sigil="ARROW")
        self.add_track_with_sigils(sigil="ARROW", color="blue",
                                   arrowhead_length=0.25)
        self.add_track_with_sigils(sigil="ARROW", color="orange",
                                   arrowhead_length=1)
        self.add_track_with_sigils(sigil="ARROW", color="red",
                                   arrowhead_length=10000) #Triangles
        self.assertEqual(len(self.gdd.tracks), 4)
        self.finish("GD_sigil_arrows")

    def test_small_arrow_heads(self):
        """Feature arrow sigil heads within bounding box."""
        #Add a track of features, bigger height to emphasise any sigil errors
        self.gdt_features = self.gdd.new_track(1, greytrack=True, height=3)
        #We'll just use one feature set for these features,
        self.gds_features = self.gdt_features.new_set()
        #Green arrows just have small heads (meaning if there is a mitre
        #it will escape the bounding box).  Red arrows are small triangles.
        feature = SeqFeature(FeatureLocation(15, 30), strand=+1)
        self.gds_features.add_feature(feature, color="grey")
        self.gds_features.add_feature(feature, name="Forward", sigil="ARROW",
                                      arrowhead_length=0.05)
        feature = SeqFeature(FeatureLocation(55, 60), strand=+1)
        self.gds_features.add_feature(feature, color="grey")
        self.gds_features.add_feature(feature, name="Forward", sigil="ARROW",
                                      arrowhead_length=1000, color="red")
        feature = SeqFeature(FeatureLocation(75, 125), strand=+1)
        self.gds_features.add_feature(feature, color="grey")
        self.gds_features.add_feature(feature, name="Forward", sigil="ARROW",
                                      arrowhead_length=0.05)
        feature = SeqFeature(FeatureLocation(140, 155), strand=None)
        self.gds_features.add_feature(feature, color="grey")
        self.gds_features.add_feature(feature, name="Strandless", sigil="ARROW",
                                      arrowhead_length=0.05)
        feature = SeqFeature(FeatureLocation(180, 185), strand=None)
        self.gds_features.add_feature(feature, color="grey")
        self.gds_features.add_feature(feature, name="Strandless", sigil="ARROW",
                                      arrowhead_length=1000, color="red")
        feature = SeqFeature(FeatureLocation(200, 250), strand=None)
        self.gds_features.add_feature(feature, color="grey")
        self.gds_features.add_feature(feature, name="Strandless", sigil="ARROW",
                                      arrowhead_length=0.05)
        feature = SeqFeature(FeatureLocation(265, 280), strand=-1)
        self.gds_features.add_feature(feature, name="Reverse", sigil="ARROW",
                                      arrowhead_length=0.05)
        feature = SeqFeature(FeatureLocation(305, 310), strand=-1)
        self.gds_features.add_feature(feature, color="grey")
        self.gds_features.add_feature(feature, name="Reverse", sigil="ARROW",
                                      arrowhead_length=1000, color="red")
        feature = SeqFeature(FeatureLocation(325, 375), strand=-1)
        self.gds_features.add_feature(feature, color="grey")
        self.gds_features.add_feature(feature, name="Reverse", sigil="ARROW",
                                      arrowhead_length=0.05)
        self.finish("GD_sigil_arrows_small")

    def test_long_arrow_heads(self):
        """Feature arrow sigil heads within bounding box."""
        #Add a track of features, bigger height to emphasise any sigil errors
        self.gdt_features = self.gdd.new_track(1, greytrack=True, height=3)
        #We'll just use one feature set for these features,
        self.gds_features = self.gdt_features.new_set()
        feature = SeqFeature(FeatureLocation(25, 375), strand=+1)
        self.gds_features.add_feature(feature, color="lightblue")
        self.gds_features.add_feature(feature, name="Forward", sigil="ARROW",
                                      color="blue", arrowhead_length=2.0)
        feature = SeqFeature(FeatureLocation(25, 375), strand=-1)
        self.gds_features.add_feature(feature, color="pink")
        self.gds_features.add_feature(feature, name="Reverse", sigil="ARROW",
                                      color="red", arrowhead_length=2.0)
        #Add another track of features, bigger height to emphasise any sigil errors
        self.gdt_features = self.gdd.new_track(1, greytrack=True, height=3)
        #We'll just use one feature set for these features,
        self.gds_features = self.gdt_features.new_set()
        feature = SeqFeature(FeatureLocation(25, 375), strand=None)
        self.gds_features.add_feature(feature, color="lightgreen")
        self.gds_features.add_feature(feature, name="Standless", sigil="ARROW",
                                      color="green", arrowhead_length=2.0)
        self.finish("GD_sigil_arrows_long")

class DiagramTest(unittest.TestCase):
    """Creating feature sets, graph sets, tracks etc individually for the diagram."""
    def setUp(self):
        """Test setup, just loads a GenBank file as a SeqRecord."""
        handle = open(os.path.join("GenBank","NC_005816.gb"), 'r')
        self.record = SeqIO.read(handle, "genbank")
        handle.close()

    def test_write_arguments(self):
        """Check how the write methods respond to output format arguments."""
        gdd = Diagram('Test Diagram')
        gdd.drawing = None #Hack - need the ReportLab drawing object to be created.
        filename = os.path.join("Graphics","error.txt")
        #We (now) allow valid formats in any case.
        for output in ["XXX","xxx",None,123,5.9]:
            try:
                gdd.write(filename, output)
                assert False, \
                       "Should have rejected %s as an output format" % output
            except ValueError, e:
                #Good!
                pass
            try:
                gdd.write_to_string(output)
                assert False, \
                       "Should have rejected %s as an output format" % output
            except ValueError, e:
                #Good!
                pass

    def test_partial_diagram(self):
        """construct and draw SVG and PDF for just part of a SeqRecord."""
        genbank_entry = self.record
        start = 6500
        end = 8750
        
        gdd = Diagram('Test Diagram',
                      #For the circular diagram we don't want a closed cirle:
                      circular=False,
                      )
        #Add a track of features,
        gdt_features = gdd.new_track(1, greytrack=True,
                                     name="CDS Features",
                                     scale_largetick_interval=1000,
                                     scale_smalltick_interval=100,
                                     scale_format = "SInt",
                                     greytrack_labels=False,
                                     height=0.5)
        #We'll just use one feature set for these features,
        gds_features = gdt_features.new_set()
        for feature in genbank_entry.features:
            if feature.type <> "CDS":
                #We're going to ignore these.
                continue
            if feature.location.end.position < start:
                #Out of frame (too far left)
                continue
            if feature.location.start.position > end:
                #Out of frame (too far right)
                continue

            #This URL should work in SVG output from recent versions
            #of ReportLab.  You need ReportLab 2.4 or later
            try :
                url = "http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi"+\
                      "?db=protein&id=%s" % feature.qualifiers["protein_id"][0]
            except KeyError :
                url = None
                
            #Note that I am using strings for color names, instead
            #of passing in color objects.  This should also work!
            if len(gds_features) % 2 == 0:
                color = "white" #for testing the automatic black border!
            else:
                color = "red"
            #Checking it can cope with the old UK spelling colour.
            #Also show the labels perpendicular to the track.
            gds_features.add_feature(feature, colour=color,
                                     url = url,
                                     sigil="ARROW",
                                     label_position = "start",
                                     label_size = 8,
                                     label_angle = 90,
                                     label=True)

        #And draw it...
        gdd.draw(format='linear', orientation='landscape',
                 tracklines=False, pagesize=(10*cm,6*cm), fragments=1,
                 start=start, end=end)
        output_filename = os.path.join('Graphics', 'GD_region_linear.pdf')
        gdd.write(output_filename, 'PDF')

        #Also check the write_to_string method matches,
        #(Note the possible confusion over new lines on Windows)
        assert open(output_filename).read().replace("\r\n","\n") \
               == gdd.write_to_string('PDF').replace("\r\n","\n")

        output_filename = os.path.join('Graphics', 'GD_region_linear.svg')
        gdd.write(output_filename, 'SVG')

        #Circular with a particular start/end is a bit odd, but by setting
        #circular=False (above) a sweep of 90% is used (a wedge is left out)
        gdd.draw(format='circular',
                 tracklines=False, pagesize=(10*cm,10*cm),
                 start=start, end=end)
        output_filename = os.path.join('Graphics', 'GD_region_circular.pdf')
        gdd.write(output_filename, 'PDF')
        output_filename = os.path.join('Graphics', 'GD_region_circular.svg')
        gdd.write(output_filename, 'SVG')

    def test_diagram_via_methods_pdf(self):
        """Construct and draw PDF using method approach."""
        genbank_entry = self.record
        gdd = Diagram('Test Diagram')

        #Add a track of features,
        gdt_features = gdd.new_track(1, greytrack=True,
                                     name="CDS Features", greytrack_labels=0,
                                     height=0.5)
        #We'll just use one feature set for the genes and misc_features,
        gds_features = gdt_features.new_set()
        for feature in genbank_entry.features:
            if feature.type == "gene":
                if len(gds_features) % 2 == 0:
                    color = "blue"
                else:
                    color = "lightblue"
                gds_features.add_feature(feature, color=color,
                                            #label_position = "middle",
                                            #label_position = "end",
                                            label_position = "start",
                                            label_size = 11,
                                            #label_angle = 90,
                                            sigil="ARROW",
                                            label=True)

        #I want to include some strandless features, so for an example
        #will use EcoRI recognition sites etc.
        for site, name, color in [("GAATTC","EcoRI","green"),
                                  ("CCCGGG","SmaI","orange"),
                                  ("AAGCTT","HindIII","red"),
                                  ("GGATCC","BamHI","purple")]:
            index = 0
            while True:
                index  = genbank_entry.seq.find(site, start=index)
                if index == -1 : break
                feature = SeqFeature(FeatureLocation(index, index+6), strand=None)

                #This URL should work in SVG output from recent versions
                #of ReportLab.  You need ReportLab 2.4 or later
                try :
                    url = "http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi"+\
                          "?db=protein&id=%s" % feature.qualifiers["protein_id"][0]
                except KeyError :
                    url = None

                gds_features.add_feature(feature, color = color,
                                         url = url,
                                         #label_position = "middle",
                                         label_size = 10,
                                         label_color = color,
                                         #label_angle = 90,
                                         name = name,
                                         label = True)
                index += len(site)
            del index

        #Now add a graph track...
        gdt_at_gc = gdd.new_track(2, greytrack=True,
                                  name="AT and GC content",
                                  greytrack_labels=True)
        gds_at_gc = gdt_at_gc.new_set(type="graph")

        step = len(genbank_entry)/200
        gds_at_gc.new_graph(apply_to_window(genbank_entry.seq, step, calc_gc_content, step),
                        'GC content', style='line', 
                        color=colors.lightgreen,
                        altcolor=colors.darkseagreen)
        gds_at_gc.new_graph(apply_to_window(genbank_entry.seq, step, calc_at_content, step),
                        'AT content', style='line', 
                        color=colors.orange,
                        altcolor=colors.red)
        
        #Finally draw it in both formats,
        gdd.draw(format='linear', orientation='landscape',
             tracklines=0, pagesize='A4', fragments=3)
        output_filename = os.path.join('Graphics', 'GD_by_meth_linear.pdf')
        gdd.write(output_filename, 'PDF')

        #Change the order and leave an empty space in the center:
        gdd.move_track(1,3)

        gdd.draw(format='circular', tracklines=False,
                 pagesize=(20*cm,20*cm), circular=True)
        output_filename = os.path.join('Graphics', 'GD_by_meth_circular.pdf')
        gdd.write(output_filename, 'PDF')

    def test_diagram_via_object_pdf(self):
        """Construct and draw PDF using object approach."""
        genbank_entry = self.record
        gdd = Diagram('Test Diagram')

        #First add some feature sets:
        gdfs1 = FeatureSet(name='CDS features')
        gdfs2 = FeatureSet(name='gene features')
        gdfs3 = FeatureSet(name='misc_features')
        gdfs4 = FeatureSet(name='repeat regions')

        cds_count = 0
        for feature in genbank_entry.features:
            if feature.type == 'CDS':
                cds_count += 1
                if cds_count % 2 == 0:
                    gdfs1.add_feature(feature, color=colors.pink)
                else:
                    gdfs1.add_feature(feature, color=colors.red)

            if feature.type == 'gene':
                gdfs2.add_feature(feature)

            if feature.type == 'misc_feature':
                gdfs3.add_feature(feature, color=colors.orange)

            if feature.type == 'repeat_region':
                gdfs4.add_feature(feature, color=colors.purple)


        gdfs1.set_all_features('label', 1)
        gdfs2.set_all_features('label', 1)
        gdfs3.set_all_features('label', 1)
        gdfs4.set_all_features('label', 1)

        gdfs3.set_all_features('hide', 0)
        gdfs4.set_all_features('hide', 0)

        #gdfs1.set_all_features('color', colors.red)
        gdfs2.set_all_features('color', colors.blue)

        gdt1 = Track('CDS features', greytrack=True,
                     scale_largetick_interval=1e4,
                     scale_smalltick_interval=1e3,
                     greytrack_labels=10,
                     greytrack_font_color="red",
                     scale_format = "SInt")
        gdt1.add_set(gdfs1)

        gdt2 = Track('gene features', greytrack=1,
                   scale_largetick_interval=1e4)
        gdt2.add_set(gdfs2)
                
        gdt3 = Track('misc features and repeats', greytrack=1,
                   scale_largetick_interval=1e4)
        gdt3.add_set(gdfs3)
        gdt3.add_set(gdfs4)

        #Now add some graph sets:

        #Use a fairly large step so we can easily tell the difference
        #between the bar and line graphs.
        step = len(genbank_entry)/200
        gdgs1 = GraphSet('GC skew')
        
        graphdata1 = apply_to_window(genbank_entry.seq, step, calc_gc_skew, step)
        gdgs1.new_graph(graphdata1, 'GC Skew', style='bar',
                color=colors.violet,
                altcolor=colors.purple)
        
        gdt4 = Track(\
                'GC Skew (bar)',
                height=1.94, greytrack=1,
                scale_largetick_interval=1e4)
        gdt4.add_set(gdgs1)


        gdgs2 = GraphSet('GC and AT Content')
        gdgs2.new_graph(apply_to_window(genbank_entry.seq, step, calc_gc_content, step),
                        'GC content', style='line', 
                        color=colors.lightgreen,
                        altcolor=colors.darkseagreen)

        gdgs2.new_graph(apply_to_window(genbank_entry.seq, step, calc_at_content, step),
                        'AT content', style='line', 
                        color=colors.orange,
                        altcolor=colors.red)    

        gdt5 = Track(\
                'GC Content(green line), AT Content(red line)',
                height=1.94, greytrack=1,
                scale_largetick_interval=1e4)
        gdt5.add_set(gdgs2)

        gdgs3 = GraphSet('Di-nucleotide count')
        step = len(genbank_entry)/400 #smaller step
        gdgs3.new_graph(apply_to_window(genbank_entry.seq, step, calc_dinucleotide_counts, step),
                        'Di-nucleotide count', style='heat', 
                        color=colors.red, altcolor=colors.orange)
        gdt6 = Track('Di-nucleotide count', height=0.5, greytrack=False, scale=False)
        gdt6.add_set(gdgs3)

        #Add the tracks (from both features and graphs)
        #Leave some white space in the middle
        gdd.add_track(gdt4, 3) # GC skew
        gdd.add_track(gdt5, 4) # GC and AT content
        gdd.add_track(gdt1, 5) # CDS features
        gdd.add_track(gdt2, 6) # Gene features
        gdd.add_track(gdt3, 7) # Misc features and repeat feature
        gdd.add_track(gdt6, 8) # Feature depth

        #Finally draw it in both formats,
        gdd.draw(format='circular', orientation='landscape',
             tracklines=0, pagesize='A0', circular=True)
        output_filename = os.path.join('Graphics', 'GD_by_obj_circular.pdf')
        gdd.write(output_filename, 'PDF')

        gdd.draw(format='linear', orientation='landscape',
             tracklines=0, pagesize='A0', fragments=3)
        output_filename = os.path.join('Graphics', 'GD_by_obj_linear.pdf')
        gdd.write(output_filename, 'PDF')

if __name__ == "__main__":
    runner = unittest.TextTestRunner(verbosity = 2)
    unittest.main(testRunner=runner)