File: test_HMMGeneral.py

package info (click to toggle)
python-biopython 1.54-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 25,400 kB
  • ctags: 10,975
  • sloc: python: 116,757; xml: 33,167; ansic: 8,622; sql: 1,488; makefile: 147
file content (183 lines) | stat: -rw-r--r-- 6,593 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#!/usr/bin/env python
"""Test the HMM.MarkovModel and HMM.DynamicProgramming modules.

Also tests Training methods.
"""
# standard modules
import unittest

# biopython
from Bio import Alphabet
from Bio.Seq import Seq


# stuff we are testing
from Bio.HMM import MarkovModel
from Bio.HMM import DynamicProgramming
from Bio.HMM import Trainer

# create some simple alphabets
class NumberAlphabet(Alphabet.Alphabet):
    """Numbers as the states of the model.
    """
    letters = ['1', '2']

class LetterAlphabet(Alphabet.Alphabet):
    """Letters as the emissions of the model.
    """
    letters = ['A', 'B']

# -- helper functions
def test_assertion(name, result, expected):
    """Helper function to test an assertion and print out a reasonable error.
    """
    assert result == expected, "Expected %s, got %s for %s" \
           % (expected, result, name)
    
class MarkovModelBuilderTest(unittest.TestCase):
    def setUp(self):
        self.mm_builder = MarkovModel.MarkovModelBuilder(NumberAlphabet(),
                                                         LetterAlphabet())

    def test_test_initialize(self):
        """Making sure MarkovModelBuilder is initialized correctly.
        """
        expected_transition_prob = {}
        expected_transition_pseudo = {}

        expected_emission_prob = {('2', 'A'): 0, ('1', 'A'): 0,
                                  ('1', 'B'): 0, ('2', 'B'): 0}
        expected_emission_pseudo = {('2', 'A'): 1, ('1', 'A'): 1,
                                    ('1', 'B'): 1, ('2', 'B'): 1}

        assertions = []
        test_assertion("Transition prob", self.mm_builder.transition_prob,
                          expected_transition_prob)
        test_assertion("Transition pseudo",
                          self.mm_builder.transition_pseudo,
                          expected_transition_pseudo)
        test_assertion("Emission prob", self.mm_builder.emission_prob,
                           expected_emission_prob)
        test_assertion("Emission pseudo", self.mm_builder.emission_pseudo,
                           expected_emission_pseudo)


    def test_allow_all_transitions(self):
        """Testing allow_all_transtions.
        """
        self.mm_builder.allow_all_transitions()

        expected_prob = {('2', '1'): 0, ('1', '1'): 0,
                         ('1', '2'): 0, ('2', '2'): 0}

        expected_pseudo = {('2', '1'): 1, ('1', '1'): 1,
                           ('1', '2'): 1, ('2', '2'): 1}

        test_assertion("Probabilities", self.mm_builder.transition_prob,
                       expected_prob)
        
        test_assertion("Pseudo counts",  self.mm_builder.transition_pseudo,
                       expected_pseudo)

class HiddenMarkovModelTest(unittest.TestCase):
    def setUp(self):
        mm_builder = MarkovModel.MarkovModelBuilder(NumberAlphabet(),
                                                    LetterAlphabet())
        mm_builder.allow_all_transitions()

        self.mm = mm_builder.get_markov_model()

    def test_transitions_from(self):
        """Testing the calculation of transitions_from
        """
        state_1 = self.mm.transitions_from("1")
        expected_state_1 = ["1", "2"]
        state_1.sort()
        expected_state_1.sort()
        test_assertion("State 1 transitions", state_1, expected_state_1)

        state_2 = self.mm.transitions_from("2")
        expected_state_2 = ["1", "2"]
        state_2.sort()
        expected_state_2.sort()
        test_assertion("State 2 transitions", state_2, expected_state_2)

        fake_state = self.mm.transitions_from("Fake")
        expected_fake_state = []
        test_assertion("Fake transition", fake_state, expected_fake_state)

class ScaledDPAlgorithmsTest(unittest.TestCase):
    def setUp(self):
        # set up our Markov Model
        mm_builder = MarkovModel.MarkovModelBuilder(NumberAlphabet(),
                                                    LetterAlphabet())
        mm_builder.allow_all_transitions()
        mm_builder.set_equal_probabilities()

        mm = mm_builder.get_markov_model()

        # now set up a test sequence
        emission_seq = Seq("ABB", LetterAlphabet())
        state_seq = Seq("", NumberAlphabet())
        training_seq = Trainer.TrainingSequence(emission_seq, state_seq)

        # finally set up the DP
        self.dp = DynamicProgramming.ScaledDPAlgorithms(mm, training_seq)
        
    def test_calculate_s_value(self):
        """Testing the calculation of s values.
        """
        previous_vars = {('1', 0) : .5,
                         ('2', 0) : .7}
        s_value = self.dp._calculate_s_value(1, previous_vars)

        # print s_value

class AbstractTrainerTest(unittest.TestCase):
    def setUp(self):
        # set up a bogus HMM and our trainer
        hmm = MarkovModel.HiddenMarkovModel({}, {}, {}, {})
        self.test_trainer = Trainer.AbstractTrainer(hmm)
    
    def test_ml_estimator(self):
        """Test the maximum likelihood estimator for simple cases.
        """
        # set up a simple dictionary
        counts = {('A', 'A') : 10,
                  ('A', 'B') : 20,
                  ('A', 'C') : 15,
                  ('B', 'B') : 5,
                  ('C', 'A') : 15,
                  ('C', 'C') : 10}

        results = self.test_trainer.ml_estimator(counts)

        # now make sure we are getting back the right thing
        result_tests = []
        result_tests.append([('A', 'A'), float(10) / float(45)])
        result_tests.append([('A', 'B'), float(20) / float(45)])
        result_tests.append([('A', 'C'), float(15) / float(45)])
        result_tests.append([('B', 'B'), float(5) / float(5)])
        result_tests.append([('C', 'A'), float(15) / float(25)])
        result_tests.append([('C', 'C'), float(10) / float(25)])

        for test_result in result_tests:
            assert results[test_result[0]] == test_result[1], \
                   "Got %f, expected %f for %s" % (results[test_result[0]],
                                                   test_result[1],
                                                   test_result[0])

    def test_log_likelihood(self):
        """Calculate log likelihood.
        """
        probs = [.25, .13, .12, .17]

        log_prob = self.test_trainer.log_likelihood(probs)
        expected_log_prob = -7.31873556778
        assert abs(expected_log_prob - log_prob) < 0.1, \
          "Bad probability calculated: %s" % log_prob

# run the tests
if __name__ == "__main__":
    runner = unittest.TextTestRunner(verbosity = 2)
    unittest.main(testRunner=runner)