1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
|
# Copyright 2003-2009 by Bartek Wilczynski. All rights reserved.
# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
"""Implementation of sequence motifs (PRIVATE).
"""
from __future__ import print_function
from Bio._py3k import range
from Bio.Seq import Seq
from Bio.SubsMat import FreqTable
from Bio.Alphabet import IUPAC
import math, random
class Motif(object):
"""
A class representing sequence motifs.
"""
def __init__(self,alphabet=IUPAC.unambiguous_dna):
self.instances = []
self.has_instances=False
self.counts = {}
self.has_counts=False
self.mask = []
self._pwm_is_current = False
self._pwm = []
self._log_odds_is_current = False
self._log_odds = []
self.alphabet=alphabet
self.length=None
self.background=dict((n, 1.0/len(self.alphabet.letters)) \
for n in self.alphabet.letters)
self.beta=1.0
self.info=None
self.name=""
def _check_length(self, len):
# TODO - Change parameter name (len clashes with built in function)?
if self.length is None:
self.length = len
elif self.length != len:
raise ValueError("You can't change the length of the motif "
"%r %r %r" % (self.length, self.instances, len))
def _check_alphabet(self, alphabet):
if self.alphabet is None:
self.alphabet=alphabet
elif self.alphabet != alphabet:
raise ValueError("Wrong Alphabet")
def add_instance(self, instance):
"""
adds new instance to the motif
"""
self._check_alphabet(instance.alphabet)
self._check_length(len(instance))
if self.has_counts:
for i in range(self.length):
let=instance[i]
self.counts[let][i]+=1
if self.has_instances or not self.has_counts:
self.instances.append(instance)
self.has_instances=True
self._pwm_is_current = False
self._log_odds_is_current = False
def set_mask(self, mask):
"""
sets the mask for the motif
The mask should be a string containing asterisks in the position of significant columns and spaces in other columns
"""
self._check_length(len(mask))
self.mask=[]
for char in mask:
if char=="*":
self.mask.append(1)
elif char==" ":
self.mask.append(0)
else:
raise ValueError("Mask should contain only '*' or ' ' and not a '%s'"%char)
def pwm(self,laplace=True):
"""
returns the PWM computed for the set of instances
if laplace=True (default), pseudocounts equal to self.background multiplied by self.beta are added to all positions.
"""
if self._pwm_is_current:
return self._pwm
#we need to compute new pwm
self._pwm = []
for i in range(self.length):
dict = {}
#filling the dict with 0's
for letter in self.alphabet.letters:
if laplace:
dict[letter]=self.beta*self.background[letter]
else:
dict[letter]=0.0
if self.has_counts:
#taking the raw counts
for letter in self.alphabet.letters:
dict[letter]+=self.counts[letter][i]
elif self.has_instances:
#counting the occurences of letters in instances
for seq in self.instances:
#dict[seq[i]]=dict[seq[i]]+1
try:
dict[seq[i]]+=1
except KeyError: #we need to ignore non-alphabet letters
pass
self._pwm.append(FreqTable.FreqTable(dict, FreqTable.COUNT, self.alphabet))
self._pwm_is_current=1
return self._pwm
def log_odds(self,laplace=True):
"""
returns the logg odds matrix computed for the set of instances
"""
if self._log_odds_is_current:
return self._log_odds
#we need to compute new pwm
self._log_odds = []
pwm=self.pwm(laplace)
for i in range(self.length):
d = {}
for a in self.alphabet.letters:
d[a]=math.log(pwm[i][a]/self.background[a], 2)
self._log_odds.append(d)
self._log_odds_is_current=1
return self._log_odds
def ic(self):
"""Method returning the information content of a motif.
"""
res=0
pwm=self.pwm()
for i in range(self.length):
res+=2
for a in self.alphabet.letters:
if pwm[i][a]!=0:
res+=pwm[i][a]*math.log(pwm[i][a], 2)
return res
def exp_score(self,st_dev=False):
"""
Computes expected score of motif's instance and its standard deviation
"""
exs=0.0
var=0.0
pwm=self.pwm()
for i in range(self.length):
ex1=0.0
ex2=0.0
for a in self.alphabet.letters:
if pwm[i][a]!=0:
ex1+=pwm[i][a]*(math.log(pwm[i][a], 2)-math.log(self.background[a], 2))
ex2+=pwm[i][a]*(math.log(pwm[i][a], 2)-math.log(self.background[a], 2))**2
exs+=ex1
var+=ex2-ex1**2
if st_dev:
return exs, math.sqrt(var)
else:
return exs
def search_instances(self, sequence):
"""
a generator function, returning found positions of instances of the motif in a given sequence
"""
if not self.has_instances:
raise ValueError ("This motif has no instances")
for pos in range(0, len(sequence) - self.length + 1):
for instance in self.instances:
if str(instance) == str(sequence[pos:pos + self.length]):
yield (pos, instance)
break # no other instance will fit (we don't want to return multiple hits)
def score_hit(self,sequence,position,normalized=0,masked=0):
"""
give the pwm score for a given position
"""
lo=self.log_odds()
score = 0.0
for pos in range(self.length):
a = sequence[position+pos]
if not masked or self.mask[pos]:
try:
score += lo[pos][a]
except:
pass
if normalized:
if not masked:
score/=self.length
else:
score/=len([x for x in self.mask if x])
return score
def search_pwm(self,sequence,normalized=0,masked=0,threshold=0.0,both=True):
"""
a generator function, returning found hits in a given sequence with the pwm score higher than the threshold
"""
if both:
rc = self.reverse_complement()
sequence = str(sequence).upper()
for pos in range(0, len(sequence) - self.length + 1):
score = self.score_hit(sequence, pos, normalized, masked)
if score > threshold:
yield (pos, score)
if both:
rev_score = rc.score_hit(sequence, pos, normalized, masked)
if rev_score > threshold:
yield (-pos, rev_score)
def dist_pearson(self, motif, masked = 0):
"""
return the similarity score based on pearson correlation for the given motif against self.
We use the Pearson's correlation of the respective probabilities.
"""
if self.alphabet != motif.alphabet:
raise ValueError("Cannot compare motifs with different alphabets")
max_p=-2
for offset in range(-self.length+1, motif.length):
if offset<0:
p = self.dist_pearson_at(motif, -offset)
else: #offset>=0
p = motif.dist_pearson_at(self, offset)
if max_p<p:
max_p=p
max_o=-offset
return 1-max_p, max_o
def dist_pearson_at(self, motif, offset):
sxx = 0 # \sum x^2
sxy = 0 # \sum x \cdot y
sx = 0 # \sum x
sy = 0 # \sum y
syy = 0 # \sum x^2
norm=max(self.length, offset+motif.length)
for pos in range(max(self.length, offset+motif.length)):
for l in self.alphabet.letters:
xi = self[pos][l]
yi = motif[pos-offset][l]
sx = sx + xi
sy = sy + yi
sxx = sxx + xi * xi
syy = syy + yi * yi
sxy = sxy + xi * yi
norm *= len(self.alphabet.letters)
s1 = (sxy - sx*sy*1.0/norm)
s2 = (norm*sxx - sx*sx*1.0)*(norm*syy- sy*sy*1.0)
return s1/math.sqrt(s2)
def dist_product(self, other):
"""
A similarity measure taking into account a product probability of generating overlaping instances of two motifs
"""
max_p=0.0
for offset in range(-self.length+1, other.length):
if offset<0:
p = self.dist_product_at(other, -offset)
else: #offset>=0
p = other.dist_product_at(self, offset)
if max_p<p:
max_p=p
max_o=-offset
return 1-max_p/self.dist_product_at(self, 0), max_o
def dist_product_at(self, other, offset):
s=0
for i in range(max(self.length, offset+other.length)):
f1=self[i]
f2=other[i-offset]
for n, b in self.background.items():
s+=b*f1[n]*f2[n]
return s/i
def dist_dpq(self, other):
r"""Calculates the DPQ distance measure between motifs.
It is calculated as a maximal value of DPQ formula (shown using LaTeX
markup, familiar to mathematicians):
\sqrt{\sum_{i=1}^{alignment.len()} \sum_{k=1}^alphabet.len() \
\{ m1[i].freq(alphabet[k])*log_2(m1[i].freq(alphabet[k])/m2[i].freq(alphabet[k])) +
m2[i].freq(alphabet[k])*log_2(m2[i].freq(alphabet[k])/m1[i].freq(alphabet[k]))
}
over possible non-spaced alignemts of two motifs. See this reference:
D. M Endres and J. E Schindelin, "A new metric for probability
distributions", IEEE transactions on Information Theory 49, no. 7
(July 2003): 1858-1860.
"""
min_d=float("inf")
min_o=-1
d_s=[]
for offset in range(-self.length+1, other.length):
#print("%2.3d"%offset)
if offset<0:
d = self.dist_dpq_at(other, -offset)
overlap = self.length+offset
else: #offset>=0
d = other.dist_dpq_at(self, offset)
overlap = other.length-offset
overlap = min(self.length, other.length, overlap)
out = self.length+other.length - 2*overlap
#print("%f %f %f" % (d,1.0*(overlap+out)/overlap,d*(overlap+out)/overlap))
#d = d/(2*overlap)
d = (d/(out+overlap))*(2*overlap+out)/(2*overlap)
#print(d)
d_s.append((offset, d))
if min_d > d:
min_d = d
min_o = -offset
return min_d, min_o #,d_s
def dist_dpq_at(self, other, offset):
"""
calculates the dist_dpq measure with a given offset.
offset should satisfy 0<=offset<=len(self)
"""
def dpq (f1, f2, alpha):
s=0
for n in alpha.letters:
avg=(f1[n]+f2[n])/2
s+=f1[n]*math.log(f1[n]/avg, 2)+f2[n]*math.log(f2[n]/avg, 2)
return math.sqrt(s)
s=0
for i in range(max(self.length, offset+other.length)):
f1=self[i]
f2=other[i-offset]
s+=dpq(f1, f2, self.alphabet)
return s
def _read(self, stream):
"""Reads the motif from the stream (in AlignAce format).
the self.alphabet variable must be set beforehand.
If the last line contains asterisks it is used for setting mask
"""
while True:
ln = stream.readline()
if "*" in ln:
self.set_mask(ln.strip("\n\c"))
break
self.add_instance(Seq(ln.strip(), self.alphabet))
def __str__(self,masked=False):
""" string representation of a motif.
"""
str = "".join(str(inst) + "\n" for inst in self.instances)
if masked:
for i in range(self.length):
if self.mask[i]:
str += "*"
else:
str += " "
str += "\n"
return str
def __len__(self):
"""return the length of a motif
Please use this method (i.e. invoke len(m)) instead of refering to the m.length directly.
"""
if self.length is None:
return 0
else:
return self.length
def _write(self, stream):
"""
writes the motif to the stream
"""
stream.write(self.__str__())
def _to_fasta(self):
"""
FASTA representation of motif
"""
if not self.has_instances:
self.make_instances_from_counts()
return "".join(">instance%d\n%s\n" % (i, inst) for i, inst in enumerate(self.instances))
def reverse_complement(self):
"""
Gives the reverse complement of the motif
"""
res = Motif()
if self.has_instances:
for i in self.instances:
res.add_instance(i.reverse_complement())
else: # has counts
res.has_counts=True
res.counts["A"]=self.counts["T"][:]
res.counts["T"]=self.counts["A"][:]
res.counts["G"]=self.counts["C"][:]
res.counts["C"]=self.counts["G"][:]
res.counts["A"].reverse()
res.counts["C"].reverse()
res.counts["G"].reverse()
res.counts["T"].reverse()
res.length=self.length
res.mask = self.mask
return res
def _from_jaspar_pfm(self,stream,make_instances=False):
"""
reads the motif from Jaspar .pfm file
The instances are fake, but the pwm is accurate.
"""
return self._from_horiz_matrix(stream, letters="ACGT", make_instances=make_instances)
def _from_vert_matrix(self,stream,letters=None,make_instances=False):
"""reads a vertical count matrix from stream and fill in the counts.
"""
self.counts = {}
self.has_counts = True
if letters is None:
letters = self.alphabet.letters
self.length = 0
for i in letters:
self.counts[i] = []
for ln in stream.readlines():
rec = [float(x) for x in ln.strip().split()]
for k, v in zip(letters, rec):
self.counts[k].append(v)
self.length += 1
self.set_mask("*"*self.length)
if make_instances is True:
self.make_instances_from_counts()
return self
def _from_horiz_matrix(self,stream,letters=None,make_instances=False):
"""reads a horizontal count matrix from stream and fill in the counts.
"""
if letters is None:
letters=self.alphabet.letters
self.counts = {}
self.has_counts=True
for i in letters:
ln = stream.readline().strip().split()
#if there is a letter in the beginning, ignore it
if ln[0] == i:
ln = ln[1:]
#print(ln)
try:
self.counts[i] = [int(x) for x in ln]
except ValueError: #not integers
self.counts[i] = [float(x) for x in ln]
#print(counts[i])
s = sum(self.counts[nuc][0] for nuc in letters)
l = len(self.counts[letters[0]])
self.length=l
self.set_mask("*"*l)
if make_instances is True:
self.make_instances_from_counts()
return self
def make_instances_from_counts(self):
"""Creates "fake" instances for a motif created from a count matrix.
In case the sums of counts are different for different columnes, the
shorter columns are padded with background.
"""
alpha = "".join(self.alphabet.letters)
#col[i] is a column taken from aligned motif instances
col = []
self.has_instances = True
self.instances = []
s = sum(self.counts[nuc][0] for nuc in self.alphabet.letters)
for i in range(self.length):
col.append("")
for n in self.alphabet.letters:
col[i] = col[i] + n*(self.counts[n][i])
if len(col[i]) < s:
print("WARNING, column too short %i %i" % (len(col[i]), s))
col[i] += (alpha*s)[:(s-len(col[i]))]
#print("column %i, %s" % (i, col[i]))
#iterate over instances
for i in range(s):
inst = "" #start with empty seq
for j in range(self.length): #iterate over positions
inst += col[j][i]
#print("%i %s" % (i,inst)
inst = Seq(inst, self.alphabet)
self.add_instance(inst)
return self.instances
def make_counts_from_instances(self):
"""Creates the count matrix for a motif with instances.
"""
#make strings for "columns" of motifs
#col[i] is a column taken from aligned motif instances
counts={}
for a in self.alphabet.letters:
counts[a]=[]
self.has_counts=True
s = len(self.instances)
for i in range(self.length):
ci = dict((a, 0) for a in self.alphabet.letters)
for inst in self.instances:
ci[inst[i]]+=1
for a in self.alphabet.letters:
counts[a].append(ci[a])
self.counts=counts
return counts
def _from_jaspar_sites(self, stream):
"""
reads the motif from Jaspar .sites file
The instances and pwm are OK.
"""
while True:
ln = stream.readline()# read the header "$>...."
if ln=="" or ln[0]!=">":
break
ln=stream.readline().strip()#read the actual sequence
i=0
while ln[i]==ln[i].lower():
i+=1
inst=""
while i<len(ln) and ln[i]==ln[i].upper():
inst+=ln[i]
i+=1
inst=Seq(inst, self.alphabet)
self.add_instance(inst)
self.set_mask("*"*len(inst))
return self
def __getitem__(self, index):
"""Returns the probability distribution over symbols at a given position, padding with background.
If the requested index is out of bounds, the returned distribution comes from background.
"""
if index in range(self.length):
return self.pwm()[index]
else:
return self.background
def consensus(self):
"""Returns the consensus sequence of a motif.
"""
res=""
for i in range(self.length):
max_f=0
max_n="X"
for n in sorted(self[i]):
if self[i][n]>max_f:
max_f=self[i][n]
max_n=n
res+=max_n
return Seq(res, self.alphabet)
def anticonsensus(self):
"""returns the least probable pattern to be generated from this motif.
"""
res=""
for i in range(self.length):
min_f=10.0
min_n="X"
for n in sorted(self[i]):
if self[i][n]<min_f:
min_f=self[i][n]
min_n=n
res+=min_n
return Seq(res, self.alphabet)
def max_score(self):
"""Maximal possible score for this motif.
returns the score computed for the consensus sequence.
"""
return self.score_hit(self.consensus(), 0)
def min_score(self):
"""Minimal possible score for this motif.
returns the score computed for the anticonsensus sequence.
"""
return self.score_hit(self.anticonsensus(), 0)
def weblogo(self,fname,format="PNG",**kwds):
"""
uses the Berkeley weblogo service to download and save a weblogo of itself
requires an internet connection.
The parameters from **kwds are passed directly to the weblogo server.
"""
from Bio._py3k import urlopen, urlencode, Request
al= self._to_fasta()
url = 'http://weblogo.berkeley.edu/logo.cgi'
values = {'sequence': al,
'format': format,
'logowidth': '18',
'logoheight': '5',
'logounits': 'cm',
'kind': 'AUTO',
'firstnum': "1",
'command': 'Create Logo',
'smallsamplecorrection': "on",
'symbolsperline': 32,
'res': '96',
'res_units': 'ppi',
'antialias': 'on',
'title': '',
'barbits': '',
'xaxis': 'on',
'xaxis_label': '',
'yaxis': 'on',
'yaxis_label': '',
'showends': 'on',
'shrink': '0.5',
'fineprint': 'on',
'ticbits': '1',
'colorscheme': 'DEFAULT',
'color1': 'green',
'color2': 'blue',
'color3': 'red',
'color4': 'black',
'color5': 'purple',
'color6': 'orange',
'color1': 'black',
}
for k, v in kwds.items():
values[k]=str(v)
data = urlencode(values)
req = Request(url, data)
response = urlopen(req)
with open(fname,"w") as f:
im=response.read()
f.write(im)
def _to_transfac(self):
"""Write the representation of a motif in TRANSFAC format
"""
res="XX\nTY Motif\n" #header
try:
res+="ID %s\n"%self.name
except:
pass
res+="BF undef\nP0"
for a in self.alphabet.letters:
res+=" %s"%a
res+="\n"
if not self.has_counts:
self.make_counts_from_instances()
for i in range(self.length):
if i<9:
res+="0%d"%(i+1)
else:
res+="%d"%(i+1)
for a in self.alphabet.letters:
res+=" %d"%self.counts[a][i]
res+="\n"
res+="XX\n"
return res
def _to_vertical_matrix(self,letters=None):
"""Return string representation of the motif as a matrix.
"""
if letters is None:
letters = self.alphabet.letters
self._pwm_is_current=False
pwm = self.pwm(laplace=False)
res = ""
for i in range(self.length):
res += "\t".join(str(pwm[i][a]) for a in letters)
res += "\n"
return res
def _to_horizontal_matrix(self,letters=None,normalized=True):
"""Return string representation of the motif as a matrix.
"""
if letters is None:
letters = self.alphabet.letters
res = ""
if normalized: #output PWM
self._pwm_is_current=False
mat=self.pwm(laplace=False)
for a in letters:
res += "\t".join(str(mat[i][a]) for i in range(self.length))
res += "\n"
else: #output counts
if not self.has_counts:
self.make_counts_from_instances()
mat = self.counts
for a in letters:
res += "\t".join(str(mat[a][i]) for i in range(self.length))
res += "\n"
return res
def _to_jaspar_pfm(self):
"""Returns the pfm representation of the motif
"""
return self._to_horizontal_matrix(normalized=False, letters="ACGT")
def format(self, format):
"""Returns a string representation of the Motif in a given format
Currently supported fromats:
- jaspar-pfm : JASPAR Position Frequency Matrix
- transfac : TRANSFAC like files
- fasta : FASTA file with instances
"""
formatters={
"jaspar-pfm": self._to_jaspar_pfm,
"transfac": self._to_transfac,
"fasta": self._to_fasta,
}
try:
return formatters[format]()
except KeyError:
raise ValueError("Wrong format type")
def scanPWM(self, seq):
"""Matrix of log-odds scores for a nucleotide sequence.
scans a nucleotide sequence and returns the matrix of log-odds
scores for all positions.
- the result is a one-dimensional list or numpy array
- the sequence can only be a DNA sequence
- the search is performed only on one strand
"""
#TODO - Code itself tolerates ambiguous bases (as NaN).
if not isinstance(self.alphabet, IUPAC.IUPACUnambiguousDNA):
raise ValueError("PSSM has wrong alphabet: %s - Use only with DNA motifs" \
% self.alphabet)
if not isinstance(seq.alphabet, IUPAC.IUPACUnambiguousDNA):
raise ValueError("Sequence has wrong alphabet: %r - Use only with DNA sequences" \
% sequence.alphabet)
seq = str(seq)
# check if the fast C code can be used
try:
import _pwm
except ImportError:
# use the slower Python code otherwise
return self._pwm_calculate(seq)
# get the log-odds matrix into a proper shape
# (each row contains sorted (ACGT) log-odds values)
logodds=[[y[1] for y in sorted(x.items())] for x in self.log_odds()]
return _pwm.calculate(seq, logodds)
def _pwm_calculate(self, sequence):
logodds = self.log_odds()
m = len(logodds)
s = len(sequence)
n = s - m + 1
result = [None] * n
for i in range(n):
score = 0.0
for j in range(m):
c = sequence[i+j]
temp = logodds[j].get(c)
if temp is None:
break
score += temp
else:
result[i] = score
return result
|