File: MarkovModel.py

package info (click to toggle)
python-biopython 1.64%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 44,416 kB
  • ctags: 12,472
  • sloc: python: 153,759; xml: 67,286; ansic: 9,003; sql: 1,488; makefile: 144; sh: 59
file content (616 lines) | stat: -rw-r--r-- 22,668 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
# This code is part of the Biopython distribution and governed by its
# license.  Please see the LICENSE file that should have been included
# as part of this package.
#

"""
This is an implementation of a state-emitting MarkovModel.  I am using
terminology similar to Manning and Schutze.



Functions:
train_bw        Train a markov model using the Baum-Welch algorithm.
train_visible   Train a visible markov model using MLE.
find_states     Find the a state sequence that explains some observations.

load            Load a MarkovModel.
save            Save a MarkovModel.

Classes:
MarkovModel     Holds the description of a markov model
"""

import numpy

try:
    logaddexp = numpy.logaddexp
except AttributeError:
    # Numpy versions older than 1.3 do not contain logaddexp.
    # Once we require Numpy version 1.3 or later, we should revisit this
    # module to see if we can simplify some of the other functions in
    # this module.
    import warnings
    warnings.warn("For optimal speed, please update to Numpy version 1.3 or later (current version is %s)" % numpy.__version__)

    def logaddexp(logx, logy):
        if logy - logx > 100:
            return logy
        elif logx - logy > 100:
            return logx
        minxy = min(logx, logy)
        return minxy + numpy.log(numpy.exp(logx-minxy) + numpy.exp(logy-minxy))


def itemindex(values):
    d = {}
    entries = enumerate(values[::-1])
    n = len(values)-1
    for index, key in entries:
        d[key] = n-index
    return d

numpy.random.seed()

VERY_SMALL_NUMBER = 1E-300
LOG0 = numpy.log(VERY_SMALL_NUMBER)


class MarkovModel(object):
    def __init__(self, states, alphabet,
                 p_initial=None, p_transition=None, p_emission=None):
        self.states = states
        self.alphabet = alphabet
        self.p_initial = p_initial
        self.p_transition = p_transition
        self.p_emission = p_emission

    def __str__(self):
        from Bio._py3k import StringIO
        handle = StringIO()
        save(self, handle)
        handle.seek(0)
        return handle.read()


def _readline_and_check_start(handle, start):
    line = handle.readline()
    if not line.startswith(start):
        raise ValueError("I expected %r but got %r" % (start, line))
    return line


def load(handle):
    """load(handle) -> MarkovModel()"""
    # Load the states.
    line = _readline_and_check_start(handle, "STATES:")
    states = line.split()[1:]

    # Load the alphabet.
    line = _readline_and_check_start(handle, "ALPHABET:")
    alphabet = line.split()[1:]

    mm = MarkovModel(states, alphabet)
    N, M = len(states), len(alphabet)

    # Load the initial probabilities.
    mm.p_initial = numpy.zeros(N)
    line = _readline_and_check_start(handle, "INITIAL:")
    for i in range(len(states)):
        line = _readline_and_check_start(handle, "  %s:" % states[i])
        mm.p_initial[i] = float(line.split()[-1])

    # Load the transition.
    mm.p_transition = numpy.zeros((N, N))
    line = _readline_and_check_start(handle, "TRANSITION:")
    for i in range(len(states)):
        line = _readline_and_check_start(handle, "  %s:" % states[i])
        mm.p_transition[i,:] = [float(v) for v in line.split()[1:]]

    # Load the emission.
    mm.p_emission = numpy.zeros((N, M))
    line = _readline_and_check_start(handle, "EMISSION:")
    for i in range(len(states)):
        line = _readline_and_check_start(handle, "  %s:" % states[i])
        mm.p_emission[i,:] = [float(v) for v in line.split()[1:]]

    return mm


def save(mm, handle):
    """save(mm, handle)"""
    # This will fail if there are spaces in the states or alphabet.
    w = handle.write
    w("STATES: %s\n" % ' '.join(mm.states))
    w("ALPHABET: %s\n" % ' '.join(mm.alphabet))
    w("INITIAL:\n")
    for i in range(len(mm.p_initial)):
        w("  %s: %g\n" % (mm.states[i], mm.p_initial[i]))
    w("TRANSITION:\n")
    for i in range(len(mm.p_transition)):
        w("  %s: %s\n" % (mm.states[i], ' '.join(str(x) for x in mm.p_transition[i])))
    w("EMISSION:\n")
    for i in range(len(mm.p_emission)):
        w("  %s: %s\n" % (mm.states[i], ' '.join(str(x) for x in mm.p_emission[i])))


# XXX allow them to specify starting points
def train_bw(states, alphabet, training_data,
             pseudo_initial=None, pseudo_transition=None, pseudo_emission=None,
             update_fn=None,
             ):
    """train_bw(states, alphabet, training_data[, pseudo_initial]
    [, pseudo_transition][, pseudo_emission][, update_fn]) -> MarkovModel

    Train a MarkovModel using the Baum-Welch algorithm.  states is a list
    of strings that describe the names of each state.  alphabet is a
    list of objects that indicate the allowed outputs.  training_data
    is a list of observations.  Each observation is a list of objects
    from the alphabet.

    pseudo_initial, pseudo_transition, and pseudo_emission are
    optional parameters that you can use to assign pseudo-counts to
    different matrices.  They should be matrices of the appropriate
    size that contain numbers to add to each parameter matrix, before
    normalization.

    update_fn is an optional callback that takes parameters
    (iteration, log_likelihood).  It is called once per iteration.

    """
    N, M = len(states), len(alphabet)
    if not training_data:
        raise ValueError("No training data given.")
    if pseudo_initial is not None:
        pseudo_initial = numpy.asarray(pseudo_initial)
        if pseudo_initial.shape != (N,):
            raise ValueError("pseudo_initial not shape len(states)")
    if pseudo_transition is not None:
        pseudo_transition = numpy.asarray(pseudo_transition)
        if pseudo_transition.shape != (N, N):
            raise ValueError("pseudo_transition not shape " +
                             "len(states) X len(states)")
    if pseudo_emission is not None:
        pseudo_emission = numpy.asarray(pseudo_emission)
        if pseudo_emission.shape != (N, M):
            raise ValueError("pseudo_emission not shape " +
                             "len(states) X len(alphabet)")

    # Training data is given as a list of members of the alphabet.
    # Replace those with indexes into the alphabet list for easier
    # computation.
    training_outputs = []
    indexes = itemindex(alphabet)
    for outputs in training_data:
        training_outputs.append([indexes[x] for x in outputs])

    # Do some sanity checking on the outputs.
    lengths = [len(x) for x in training_outputs]
    if min(lengths) == 0:
        raise ValueError("I got training data with outputs of length 0")

    # Do the training with baum welch.
    x = _baum_welch(N, M, training_outputs,
                    pseudo_initial=pseudo_initial,
                    pseudo_transition=pseudo_transition,
                    pseudo_emission=pseudo_emission,
                    update_fn=update_fn)
    p_initial, p_transition, p_emission = x
    return MarkovModel(states, alphabet, p_initial, p_transition, p_emission)

MAX_ITERATIONS = 1000


def _baum_welch(N, M, training_outputs,
                p_initial=None, p_transition=None, p_emission=None,
                pseudo_initial=None, pseudo_transition=None,
                pseudo_emission=None, update_fn=None):
    # Returns (p_initial, p_transition, p_emission)
    if p_initial is None:
        p_initial = _random_norm(N)
    else:
        p_initial = _copy_and_check(p_initial, (N,))

    if p_transition is None:
        p_transition = _random_norm((N, N))
    else:
        p_transition = _copy_and_check(p_transition, (N, N))
    if p_emission is None:
        p_emission = _random_norm((N, M))
    else:
        p_emission = _copy_and_check(p_emission, (N, M))

    # Do all the calculations in log space to avoid underflows.
    lp_initial = numpy.log(p_initial)
    lp_transition = numpy.log(p_transition)
    lp_emission = numpy.log(p_emission)
    if pseudo_initial is not None:
        lpseudo_initial = numpy.log(pseudo_initial)
    else:
        lpseudo_initial = None
    if pseudo_transition is not None:
        lpseudo_transition = numpy.log(pseudo_transition)
    else:
        lpseudo_transition = None
    if pseudo_emission is not None:
        lpseudo_emission = numpy.log(pseudo_emission)
    else:
        lpseudo_emission = None

    # Iterate through each sequence of output, updating the parameters
    # to the HMM.  Stop when the log likelihoods of the sequences
    # stops varying.
    prev_llik = None
    for i in range(MAX_ITERATIONS):
        llik = LOG0
        for outputs in training_outputs:
            x = _baum_welch_one(
                N, M, outputs,
                lp_initial, lp_transition, lp_emission,
                lpseudo_initial, lpseudo_transition, lpseudo_emission,)
            llik += x
        if update_fn is not None:
            update_fn(i, llik)
        if prev_llik is not None and numpy.fabs(prev_llik-llik) < 0.1:
            break
        prev_llik = llik
    else:
        raise RuntimeError("HMM did not converge in %d iterations"
                           % MAX_ITERATIONS)

    # Return everything back in normal space.
    return [numpy.exp(x) for x in (lp_initial, lp_transition, lp_emission)]


def _baum_welch_one(N, M, outputs,
                    lp_initial, lp_transition, lp_emission,
                    lpseudo_initial, lpseudo_transition, lpseudo_emission):
    # Do one iteration of Baum-Welch based on a sequence of output.
    # NOTE: This will change the values of lp_initial, lp_transition,
    # and lp_emission in place.
    T = len(outputs)
    fmat = _forward(N, T, lp_initial, lp_transition, lp_emission, outputs)
    bmat = _backward(N, T, lp_transition, lp_emission, outputs)

    # Calculate the probability of traversing each arc for any given
    # transition.
    lp_arc = numpy.zeros((N, N, T))
    for t in range(T):
        k = outputs[t]
        lp_traverse = numpy.zeros((N, N)) # P going over one arc.
        for i in range(N):
            for j in range(N):
                # P(getting to this arc)
                # P(making this transition)
                # P(emitting this character)
                # P(going to the end)
                lp = fmat[i][t] + \
                     lp_transition[i][j] + \
                     lp_emission[i][k] + \
                     bmat[j][t+1]
                lp_traverse[i][j] = lp
        # Normalize the probability for this time step.
        lp_arc[:,:, t] = lp_traverse - _logsum(lp_traverse)

    # Sum of all the transitions out of state i at time t.
    lp_arcout_t = numpy.zeros((N, T))
    for t in range(T):
        for i in range(N):
            lp_arcout_t[i][t] = _logsum(lp_arc[i,:, t])

    # Sum of all the transitions out of state i.
    lp_arcout = numpy.zeros(N)
    for i in range(N):
        lp_arcout[i] = _logsum(lp_arcout_t[i,:])

    # UPDATE P_INITIAL.
    lp_initial = lp_arcout_t[:, 0]
    if lpseudo_initial is not None:
        lp_initial = _logvecadd(lp_initial, lpseudo_initial)
        lp_initial = lp_initial - _logsum(lp_initial)

    # UPDATE P_TRANSITION.  p_transition[i][j] is the sum of all the
    # transitions from i to j, normalized by the sum of the
    # transitions out of i.
    for i in range(N):
        for j in range(N):
            lp_transition[i][j] = _logsum(lp_arc[i, j,:]) - lp_arcout[i]
        if lpseudo_transition is not None:
            lp_transition[i] = _logvecadd(lp_transition[i], lpseudo_transition)
            lp_transition[i] = lp_transition[i] - _logsum(lp_transition[i])

    # UPDATE P_EMISSION.  lp_emission[i][k] is the sum of all the
    # transitions out of i when k is observed, divided by the sum of
    # the transitions out of i.
    for i in range(N):
        ksum = numpy.zeros(M)+LOG0    # ksum[k] is the sum of all i with k.
        for t in range(T):
            k = outputs[t]
            for j in range(N):
                ksum[k] = logaddexp(ksum[k], lp_arc[i, j, t])
        ksum = ksum - _logsum(ksum)      # Normalize
        if lpseudo_emission is not None:
            ksum = _logvecadd(ksum, lpseudo_emission[i])
            ksum = ksum - _logsum(ksum)  # Renormalize
        lp_emission[i,:] = ksum

    # Calculate the log likelihood of the output based on the forward
    # matrix.  Since the parameters of the HMM has changed, the log
    # likelihoods are going to be a step behind, and we might be doing
    # one extra iteration of training.  The alternative is to rerun
    # the _forward algorithm and calculate from the clean one, but
    # that may be more expensive than overshooting the training by one
    # step.
    return _logsum(fmat[:, T])


def _forward(N, T, lp_initial, lp_transition, lp_emission, outputs):
    # Implement the forward algorithm.  This actually calculates a
    # Nx(T+1) matrix, where the last column is the total probability
    # of the output.

    matrix = numpy.zeros((N, T+1))

    # Initialize the first column to be the initial values.
    matrix[:, 0] = lp_initial
    for t in range(1, T+1):
        k = outputs[t-1]
        for j in range(N):
            # The probability of the state is the sum of the
            # transitions from all the states from time t-1.
            lprob = LOG0
            for i in range(N):
                lp = matrix[i][t-1] + \
                     lp_transition[i][j] + \
                     lp_emission[i][k]
                lprob = logaddexp(lprob, lp)
            matrix[j][t] = lprob
    return matrix


def _backward(N, T, lp_transition, lp_emission, outputs):
    matrix = numpy.zeros((N, T+1))
    for t in range(T-1, -1, -1):
        k = outputs[t]
        for i in range(N):
            # The probability of the state is the sum of the
            # transitions from all the states from time t+1.
            lprob = LOG0
            for j in range(N):
                lp = matrix[j][t+1] + \
                     lp_transition[i][j] + \
                     lp_emission[i][k]
                lprob = logaddexp(lprob, lp)
            matrix[i][t] = lprob
    return matrix


def train_visible(states, alphabet, training_data,
                  pseudo_initial=None, pseudo_transition=None,
                  pseudo_emission=None):
    """train_visible(states, alphabet, training_data[, pseudo_initial]
    [, pseudo_transition][, pseudo_emission]) -> MarkovModel

    Train a visible MarkovModel using maximum likelihoood estimates
    for each of the parameters.  states is a list of strings that
    describe the names of each state.  alphabet is a list of objects
    that indicate the allowed outputs.  training_data is a list of
    (outputs, observed states) where outputs is a list of the emission
    from the alphabet, and observed states is a list of states from
    states.

    pseudo_initial, pseudo_transition, and pseudo_emission are
    optional parameters that you can use to assign pseudo-counts to
    different matrices.  They should be matrices of the appropriate
    size that contain numbers to add to each parameter matrix

    """
    N, M = len(states), len(alphabet)
    if pseudo_initial is not None:
        pseudo_initial = numpy.asarray(pseudo_initial)
        if pseudo_initial.shape != (N,):
            raise ValueError("pseudo_initial not shape len(states)")
    if pseudo_transition is not None:
        pseudo_transition = numpy.asarray(pseudo_transition)
        if pseudo_transition.shape != (N, N):
            raise ValueError("pseudo_transition not shape " +
                             "len(states) X len(states)")
    if pseudo_emission is not None:
        pseudo_emission = numpy.asarray(pseudo_emission)
        if pseudo_emission.shape != (N, M):
            raise ValueError("pseudo_emission not shape " +
                             "len(states) X len(alphabet)")

    # Training data is given as a list of members of the alphabet.
    # Replace those with indexes into the alphabet list for easier
    # computation.
    training_states, training_outputs = [], []
    states_indexes = itemindex(states)
    outputs_indexes = itemindex(alphabet)
    for toutputs, tstates in training_data:
        if len(tstates) != len(toutputs):
            raise ValueError("states and outputs not aligned")
        training_states.append([states_indexes[x] for x in tstates])
        training_outputs.append([outputs_indexes[x] for x in toutputs])

    x = _mle(N, M, training_outputs, training_states,
             pseudo_initial, pseudo_transition, pseudo_emission)
    p_initial, p_transition, p_emission = x

    return MarkovModel(states, alphabet, p_initial, p_transition, p_emission)


def _mle(N, M, training_outputs, training_states, pseudo_initial,
         pseudo_transition, pseudo_emission):
    # p_initial is the probability that a sequence of states starts
    # off with a particular one.
    p_initial = numpy.zeros(N)
    if pseudo_initial:
        p_initial = p_initial + pseudo_initial
    for states in training_states:
        p_initial[states[0]] += 1
    p_initial = _normalize(p_initial)

    # p_transition is the probability that a state leads to the next
    # one.  C(i,j)/C(i) where i and j are states.
    p_transition = numpy.zeros((N, N))
    if pseudo_transition:
        p_transition = p_transition + pseudo_transition
    for states in training_states:
        for n in range(len(states)-1):
            i, j = states[n], states[n+1]
            p_transition[i, j] += 1
    for i in range(len(p_transition)):
        p_transition[i,:] = p_transition[i,:] / sum(p_transition[i,:])

    # p_emission is the probability of an output given a state.
    # C(s,o)|C(s) where o is an output and s is a state.
    p_emission = numpy.zeros((N, M))
    if pseudo_emission:
        p_emission = p_emission + pseudo_emission
    p_emission = numpy.ones((N, M))
    for outputs, states in zip(training_outputs, training_states):
        for o, s in zip(outputs, states):
            p_emission[s, o] += 1
    for i in range(len(p_emission)):
        p_emission[i,:] = p_emission[i,:] / sum(p_emission[i,:])

    return p_initial, p_transition, p_emission


def _argmaxes(vector, allowance=None):
    return [numpy.argmax(vector)]


def find_states(markov_model, output):
    """find_states(markov_model, output) -> list of (states, score)"""
    mm = markov_model
    N = len(mm.states)

    # _viterbi does calculations in log space.  Add a tiny bit to the
    # matrices so that the logs will not break.
    lp_initial = numpy.log(mm.p_initial + VERY_SMALL_NUMBER)
    lp_transition = numpy.log(mm.p_transition + VERY_SMALL_NUMBER)
    lp_emission = numpy.log(mm.p_emission + VERY_SMALL_NUMBER)
    # Change output into a list of indexes into the alphabet.
    indexes = itemindex(mm.alphabet)
    output = [indexes[x] for x in output]

    # Run the viterbi algorithm.
    results = _viterbi(N, lp_initial, lp_transition, lp_emission, output)

    for i in range(len(results)):
        states, score = results[i]
        results[i] = [mm.states[x] for x in states], numpy.exp(score)
    return results


def _viterbi(N, lp_initial, lp_transition, lp_emission, output):
    # The Viterbi algorithm finds the most likely set of states for a
    # given output.  Returns a list of states.

    T = len(output)
    # Store the backtrace in a NxT matrix.
    backtrace = []    # list of indexes of states in previous timestep.
    for i in range(N):
        backtrace.append([None] * T)

    # Store the best scores.
    scores = numpy.zeros((N, T))
    scores[:, 0] = lp_initial + lp_emission[:, output[0]]
    for t in range(1, T):
        k = output[t]
        for j in range(N):
            # Find the most likely place it came from.
            i_scores = scores[:, t-1] + \
                       lp_transition[:, j] + \
                       lp_emission[j, k]
            indexes = _argmaxes(i_scores)
            scores[j, t] = i_scores[indexes[0]]
            backtrace[j][t] = indexes

    # Do the backtrace.  First, find a good place to start.  Then,
    # we'll follow the backtrace matrix to find the list of states.
    # In the event of ties, there may be multiple paths back through
    # the matrix, which implies a recursive solution.  We'll simulate
    # it by keeping our own stack.
    in_process = []    # list of (t, states, score)
    results = []       # return values.  list of (states, score)
    indexes = _argmaxes(scores[:, T-1])      # pick the first place
    for i in indexes:
        in_process.append((T-1, [i], scores[i][T-1]))
    while in_process:
        t, states, score = in_process.pop()
        if t == 0:
            results.append((states, score))
        else:
            indexes = backtrace[states[0]][t]
            for i in indexes:
                in_process.append((t-1, [i]+states, score))
    return results


def _normalize(matrix):
    # Make sure numbers add up to 1.0
    if len(matrix.shape) == 1:
        matrix = matrix / float(sum(matrix))
    elif len(matrix.shape) == 2:
        # Normalize by rows.
        for i in range(len(matrix)):
            matrix[i,:] = matrix[i,:] / sum(matrix[i,:])
    else:
        raise ValueError("I cannot handle matrixes of that shape")
    return matrix


def _uniform_norm(shape):
    matrix = numpy.ones(shape)
    return _normalize(matrix)


def _random_norm(shape):
    matrix = numpy.random.random(shape)
    return _normalize(matrix)


def _copy_and_check(matrix, desired_shape):
    # Copy the matrix.
    matrix = numpy.array(matrix, copy=1)
    # Check the dimensions.
    if matrix.shape != desired_shape:
        raise ValueError("Incorrect dimension")
    # Make sure it's normalized.
    if len(matrix.shape) == 1:
        if numpy.fabs(sum(matrix)-1.0) > 0.01:
            raise ValueError("matrix not normalized to 1.0")
    elif len(matrix.shape) == 2:
        for i in range(len(matrix)):
            if numpy.fabs(sum(matrix[i])-1.0) > 0.01:
                raise ValueError("matrix %d not normalized to 1.0" % i)
    else:
        raise ValueError("I don't handle matrices > 2 dimensions")
    return matrix


def _logsum(matrix):
    if len(matrix.shape) > 1:
        vec = numpy.reshape(matrix, (numpy.product(matrix.shape),))
    else:
        vec = matrix
    sum = LOG0
    for num in vec:
        sum = logaddexp(sum, num)
    return sum


def _logvecadd(logvec1, logvec2):
    assert len(logvec1) == len(logvec2), "vectors aren't the same length"
    sumvec = numpy.zeros(len(logvec1))
    for i in range(len(logvec1)):
        sumvec[i] = logaddexp(logvec1[i], logvec2[i])
    return sumvec


def _exp_logsum(numbers):
    sum = _logsum(numbers)
    return numpy.exp(sum)