File: SeqFeature.py

package info (click to toggle)
python-biopython 1.64%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 44,416 kB
  • ctags: 12,472
  • sloc: python: 153,759; xml: 67,286; ansic: 9,003; sql: 1,488; makefile: 144; sh: 59
file content (1804 lines) | stat: -rw-r--r-- 62,295 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
# Copyright 2000-2003 Jeff Chang.
# Copyright 2001-2008 Brad Chapman.
# Copyright 2005-2012 by Peter Cock.
# Copyright 2006-2009 Michiel de Hoon.
# All rights reserved.
# This code is part of the Biopython distribution and governed by its
# license.  Please see the LICENSE file that should have been included
# as part of this package.
"""Represent a Sequence Feature holding info about a part of a sequence.

This is heavily modeled after the Biocorba SeqFeature objects, and
may be pretty biased towards GenBank stuff since I'm writing it
for the GenBank parser output...

What's here:

Base class to hold a Feature.
----------------------------
classes:
o SeqFeature

Hold information about a Reference.
----------------------------------

This is an attempt to create a General class to hold Reference type
information.

classes:
o Reference

Specify locations of a feature on a Sequence.
---------------------------------------------

This aims to handle, in Ewan's words, 'the dreaded fuzziness issue' in
much the same way as Biocorba. This has the advantages of allowing us
to handle fuzzy stuff in case anyone needs it, and also be compatible
with Biocorba.

classes:
o FeatureLocation - Specify the start and end location of a feature.
o CompoundLocation - Collection of FeatureLocation objects (for joins etc).

o ExactPosition - Specify the position as being exact.
o WithinPosition - Specify a position occuring within some range.
o BetweenPosition - Specify a position occuring between a range (OBSOLETE?).
o BeforePosition - Specify the position as being found before some base.
o AfterPosition - Specify the position as being found after some base.
o OneOfPosition - Specify a position where the location can be multiple positions.
o UnknownPosition - Represents missing information like '?' in UniProt.
"""

from __future__ import print_function

from Bio.Seq import MutableSeq, reverse_complement


class SeqFeature(object):
    """Represent a Sequence Feature on an object.

    Attributes:
    o location - the location of the feature on the sequence (FeatureLocation)
    o type - the specified type of the feature (ie. CDS, exon, repeat...)
    o location_operator - a string specifying how this SeqFeature may
    be related to others. For example, in the example GenBank feature
    shown below, the location_operator would be "join". This is a proxy
    for feature.location.operator and only applies to compound locations.
    o strand - A value specifying on which strand (of a DNA sequence, for
    instance) the feature deals with. 1 indicates the plus strand, -1
    indicates the minus strand, 0 indicates stranded but unknown (? in GFF3),
    while the default of None indicates that strand doesn't apply (dot in GFF3,
    e.g. features on proteins). Note this is a shortcut for accessing the
    strand property of the feature's location.
    o id - A string identifier for the feature.
    o ref - A reference to another sequence. This could be an accession
    number for some different sequence. Note this is a shortcut for the
    reference property of the feature's location.
    o ref_db - A different database for the reference accession number.
    Note this is a shortcut for the reference property of the location
    o qualifiers - A dictionary of qualifiers on the feature. These are
    analogous to the qualifiers from a GenBank feature table. The keys of
    the dictionary are qualifier names, the values are the qualifier
    values.
    o sub_features - Obsolete list of additional SeqFeatures which was
    used for holding compound locations (e.g. joins in GenBank/EMBL).
    This is now superceded by a CompoundFeatureLocation as the location,
    and should not be used (DEPRECATED).
    """
    def __init__(self, location = None, type = '', location_operator = '',
                 strand = None, id = "<unknown id>",
                 qualifiers = None, sub_features = None,
                 ref = None, ref_db = None):
        """Initialize a SeqFeature on a Sequence.

        location can either be a FeatureLocation (with strand argument also
        given if required), or None.

        e.g. With no strand, on the forward strand, and on the reverse strand:

        >>> from Bio.SeqFeature import SeqFeature, FeatureLocation
        >>> f1 = SeqFeature(FeatureLocation(5, 10), type="domain")
        >>> f1.strand == f1.location.strand == None
        True
        >>> f2 = SeqFeature(FeatureLocation(7, 110, strand=1), type="CDS")
        >>> f2.strand == f2.location.strand == +1
        True
        >>> f3 = SeqFeature(FeatureLocation(9, 108, strand=-1), type="CDS")
        >>> f3.strand == f3.location.strand == -1
        True

        An invalid strand will trigger an exception:

        >>> f4 = SeqFeature(FeatureLocation(50, 60), strand=2)
        Traceback (most recent call last):
           ...
        ValueError: Strand should be +1, -1, 0 or None, not 2

        Similarly if set via the FeatureLocation directly:

        >>> loc4 = FeatureLocation(50, 60, strand=2)
        Traceback (most recent call last):
           ...
        ValueError: Strand should be +1, -1, 0 or None, not 2

        For exact start/end positions, an integer can be used (as shown above)
        as shorthand for the ExactPosition object. For non-exact locations, the
        FeatureLocation must be specified via the appropriate position objects.

        Note that the strand, ref and ref_db arguments to the SeqFeature are
        now obsolete and will be deprecated in a future release (which will
        give warning messages) and later removed. Set them via the location
        object instead.

        Note that location_operator and sub_features arguments can no longer
        be used, instead do this via the CompoundLocation object.
        """
        if location is not None and not isinstance(location, FeatureLocation) \
        and not isinstance(location, CompoundLocation):
            raise TypeError("FeatureLocation, CompoundLocation (or None) required for the location")
        self.location = location
        self.type = type
        if location_operator:
            #TODO - Deprecation warning
            self.location_operator = location_operator
        if strand is not None:
            #TODO - Deprecation warning
            self.strand = strand
        self.id = id
        if qualifiers is None:
            qualifiers = {}
        self.qualifiers = qualifiers
        if sub_features is None:
            sub_features = []
        else:
            import warnings
            from Bio import BiopythonDeprecationWarning
            warnings.warn("Rather than sub_features, use a CompoundFeatureLocation",
                          BiopythonDeprecationWarning)
        self._sub_features = sub_features
        if ref is not None:
            #TODO - Deprecation warning
            self.ref = ref
        if ref_db is not None:
            #TODO - Deprecation warning
            self.ref_db = ref_db

    def _get_sub_features(self):
        if self._sub_features:
            import warnings
            from Bio import BiopythonDeprecationWarning
            warnings.warn("Rather using f.sub_features, f.location should be a CompoundFeatureLocation",
                          BiopythonDeprecationWarning)
        return self._sub_features
    def _set_sub_features(self, value):
        if value:
            import warnings
            from Bio import BiopythonDeprecationWarning
            warnings.warn("Rather than f.sub_features, use a CompoundFeatureLocation for f.location",
                          BiopythonDeprecationWarning)
        self._sub_features = value
    sub_features = property(fget = _get_sub_features, fset = _set_sub_features,
                            doc = "Obsolete representation of compound locations (DEPRECATED).")

    def _get_strand(self):
        return self.location.strand

    def _set_strand(self, value):
        try:
            self.location.strand = value
        except AttributeError:
            if self.location is None:
                if value is not None:
                    raise ValueError("Can't set strand without a location.")
            else:
                raise

    strand = property(fget = _get_strand, fset = _set_strand,
                      doc = """Feature's strand

                            This is a shortcut for feature.location.strand
                            """)

    def _get_ref(self):
        try:
            return self.location.ref
        except AttributeError:
            return None
    def _set_ref(self, value):
        try:
            self.location.ref = value
        except AttributeError:
            if self.location is None:
                if value is not None:
                    raise ValueError("Can't set ref without a location.")
            else:
                raise
    ref = property(fget = _get_ref, fset = _set_ref,
                   doc = """Feature location reference (e.g. accession).

                         This is a shortcut for feature.location.ref
                         """)

    def _get_ref_db(self):
        try:
            return self.location.ref_db
        except AttributeError:
            return None
    def _set_ref_db(self, value):
        self.location.ref_db = value
    ref_db = property(fget = _get_ref_db, fset = _set_ref_db,
                      doc = """Feature location reference's database.

                            This is a shortcut for feature.location.ref_db
                            """)

    def _get_location_operator(self):
        try:
            return self.location.operator
        except AttributeError:
            return None
    def _set_location_operator(self, value):
        if value:
            if isinstance(self.location, CompoundLocation):
                self.location.operator = value
            elif self.location is None:
                raise ValueError("Location is None so can't set its operator (to %r)" % value)
            else:
                raise ValueError("Only CompoundLocation gets an operator (%r)" % value)
    location_operator = property(fget = _get_location_operator, fset = _set_location_operator,
                                 doc = "Location operator for compound locations (e.g. join).")

    def __repr__(self):
        """A string representation of the record for debugging."""
        answer = "%s(%s" % (self.__class__.__name__, repr(self.location))
        if self.type:
            answer += ", type=%s" % repr(self.type)
        if self.location_operator:
            answer += ", location_operator=%s" % repr(self.location_operator)
        if self.id and self.id != "<unknown id>":
            answer += ", id=%s" % repr(self.id)
        if self.ref:
            answer += ", ref=%s" % repr(self.ref)
        if self.ref_db:
            answer += ", ref_db=%s" % repr(self.ref_db)
        answer += ")"
        return answer

    def __str__(self):
        """A readable summary of the feature intended to be printed to screen.
        """
        out = "type: %s\n" % self.type
        out += "location: %s\n" % self.location
        if self.id and self.id != "<unknown id>":
            out += "id: %s\n" % self.id
        out += "qualifiers: \n"
        for qual_key in sorted(self.qualifiers):
            out += "    Key: %s, Value: %s\n" % (qual_key,
                                               self.qualifiers[qual_key])
        #TODO - Remove this from __str__ since deprecated
        if len(self._sub_features) != 0:
            out += "Sub-Features\n"
            for sub_feature in self._sub_features:
                out +="%s\n" % sub_feature
        return out

    def _shift(self, offset):
        """Returns a copy of the feature with its location shifted (PRIVATE).

        The annotation qaulifiers are copied."""
        answer = SeqFeature(location = self.location._shift(offset),
                            type = self.type,
                            location_operator = self.location_operator,
                            id = self.id,
                            qualifiers = dict(self.qualifiers.items()))
        #This is to avoid the deprecation warning:
        answer._sub_features = [f._shift(offset) for f in self._sub_features]
        return answer

    def _flip(self, length):
        """Returns a copy of the feature with its location flipped (PRIVATE).

        The argument length gives the length of the parent sequence. For
        example a location 0..20 (+1 strand) with parent length 30 becomes
        after flipping 10..30 (-1 strand). Strandless (None) or unknown
        strand (0) remain like that - just their end points are changed.

        The annotation qaulifiers are copied.
        """
        answer = SeqFeature(location = self.location._flip(length),
                            type = self.type,
                            location_operator = self.location_operator,
                            id = self.id,
                            qualifiers = dict(self.qualifiers.items()))
        #This is to avoid the deprecation warning: 
        answer._sub_features = [f._flip(length) for f in self._sub_features[::-1]]
        return answer

    def extract(self, parent_sequence):
        """Extract feature sequence from the supplied parent sequence.

        The parent_sequence can be a Seq like object or a string, and will
        generally return an object of the same type. The exception to this is
        a MutableSeq as the parent sequence will return a Seq object.

        This should cope with complex locations including complements, joins
        and fuzzy positions. Even mixed strand features should work! This
        also covers features on protein sequences (e.g. domains), although
        here reverse strand features are not permitted.

        >>> from Bio.Seq import Seq
        >>> from Bio.Alphabet import generic_protein
        >>> from Bio.SeqFeature import SeqFeature, FeatureLocation
        >>> seq = Seq("MKQHKAMIVALIVICITAVVAAL", generic_protein)
        >>> f = SeqFeature(FeatureLocation(8, 15), type="domain")
        >>> f.extract(seq)
        Seq('VALIVIC', ProteinAlphabet())

        Note - currently only sub-features of type "join" are supported.
        """
        return self.location.extract(parent_sequence)
    
    #Python 3:
    def __bool__(self):
        """Boolean value of an instance of this class (True).

        This behaviour is for backwards compatibility, since until the
        __len__ method was added, a SeqFeature always evaluated as True.

        Note that in comparison, Seq objects, strings, lists, etc, will all
        evaluate to False if they have length zero.

        WARNING: The SeqFeature may in future evaluate to False when its
        length is zero (in order to better match normal python behaviour)!
        """
        return True

    #Python 2:
    __nonzero__= __bool__

    def __len__(self):
        """Returns the length of the region described by a feature.

        >>> from Bio.Seq import Seq
        >>> from Bio.Alphabet import generic_protein
        >>> from Bio.SeqFeature import SeqFeature, FeatureLocation
        >>> seq = Seq("MKQHKAMIVALIVICITAVVAAL", generic_protein)
        >>> f = SeqFeature(FeatureLocation(8, 15), type="domain")
        >>> len(f)
        7
        >>> f.extract(seq)
        Seq('VALIVIC', ProteinAlphabet())
        >>> len(f.extract(seq))
        7

        This is a proxy for taking the length of the feature's location:

        >>> len(f.location)
        7

        For simple features this is the same as the region spanned (end
        position minus start position using Pythonic counting). However, for
        a compound location (e.g. a CDS as the join of several exons) the
        gaps are not counted (e.g. introns). This ensures that len(f) matches
        len(f.extract(parent_seq)), and also makes sure things work properly
        with features wrapping the origin etc.
        """
        return len(self.location)

    def __iter__(self):
        """Iterate over the parent positions within the feature.

        The iteration order is strand aware, and can be thought of as moving
        along the feature using the parent sequence coordinates:

        >>> from Bio.SeqFeature import SeqFeature, FeatureLocation
        >>> f = SeqFeature(FeatureLocation(5, 10), type="domain", strand=-1)
        >>> len(f)
        5
        >>> for i in f: print(i)
        9
        8
        7
        6
        5
        >>> list(f)
        [9, 8, 7, 6, 5]

        This is a proxy for iterating over the location,

        >>> list(f.location)
        [9, 8, 7, 6, 5]
        """
        return iter(self.location)

    def __contains__(self, value):
        """Check if an integer position is within the feature.

        >>> from Bio.SeqFeature import SeqFeature, FeatureLocation
        >>> f = SeqFeature(FeatureLocation(5, 10), type="domain", strand=-1)
        >>> len(f)
        5
        >>> [i for i in range(15) if i in f]
        [5, 6, 7, 8, 9]

        For example, to see which features include a SNP position, you could
        use this:

        >>> from Bio import SeqIO
        >>> record = SeqIO.read("GenBank/NC_000932.gb", "gb")
        >>> for f in record.features:
        ...     if 1750 in f:
        ...         print("%s %s" % (f.type, f.location))
        source [0:154478](+)
        gene [1716:4347](-)
        tRNA join{[4310:4347](-), [1716:1751](-)}

        Note that for a feature defined as a join of several subfeatures (e.g.
        the union of several exons) the gaps are not checked (e.g. introns).
        In this example, the tRNA location is defined in the GenBank file as
        complement(join(1717..1751,4311..4347)), so that position 1760 falls
        in the gap:

        >>> for f in record.features:
        ...     if 1760 in f:
        ...         print("%s %s" % (f.type, f.location))
        source [0:154478](+)
        gene [1716:4347](-)

        Note that additional care may be required with fuzzy locations, for
        example just before a BeforePosition:

        >>> from Bio.SeqFeature import SeqFeature, FeatureLocation
        >>> from Bio.SeqFeature import BeforePosition
        >>> f = SeqFeature(FeatureLocation(BeforePosition(3), 8), type="domain")
        >>> len(f)
        5
        >>> [i for i in range(10) if i in f]
        [3, 4, 5, 6, 7]

        Note that is is a proxy for testing membership on the location.

        >>> [i for i in range(10) if i in f.location]
        [3, 4, 5, 6, 7]
        """
        return value in self.location


# --- References


# TODO -- Will this hold PubMed and Medline information decently?
class Reference(object):
    """Represent a Generic Reference object.

    Attributes:
    o location - A list of Location objects specifying regions of
    the sequence that the references correspond to. If no locations are
    specified, the entire sequence is assumed.
    o authors - A big old string, or a list split by author, of authors
    for the reference.
    o title - The title of the reference.
    o journal - Journal the reference was published in.
    o medline_id - A medline reference for the article.
    o pubmed_id - A pubmed reference for the article.
    o comment - A place to stick any comments about the reference.
    """
    def __init__(self):
        self.location = []
        self.authors = ''
        self.consrtm = ''
        self.title = ''
        self.journal = ''
        self.medline_id = ''
        self.pubmed_id = ''
        self.comment = ''

    def __str__(self):
        """Output an informative string for debugging.
        """
        out = ""
        for single_location in self.location:
            out += "location: %s\n" % single_location
        out += "authors: %s\n" % self.authors
        if self.consrtm:
            out += "consrtm: %s\n" % self.consrtm
        out += "title: %s\n" % self.title
        out += "journal: %s\n" % self.journal
        out += "medline id: %s\n" % self.medline_id
        out += "pubmed id: %s\n" % self.pubmed_id
        out += "comment: %s\n" % self.comment
        return out

    def __repr__(self):
        #TODO - Update this is __init__ later accpets values
        return "%s(title=%s, ...)" % (self.__class__.__name__,
                                      repr(self.title))


# --- Handling feature locations

class FeatureLocation(object):
    """Specify the location of a feature along a sequence.

    The FeatureLocation is used for simple continous features, which can
    be described as running from a start position to and end position
    (optionally with a strand and reference information).  More complex
    locations made up from several non-continuous parts (e.g. a coding
    sequence made up of several exons) are currently described using a
    SeqFeature with sub-features.

    Note that the start and end location numbering follow Python's scheme,
    thus a GenBank entry of 123..150 (one based counting) becomes a location
    of [122:150] (zero based counting).

    >>> from Bio.SeqFeature import FeatureLocation
    >>> f = FeatureLocation(122, 150)
    >>> print(f)
    [122:150]
    >>> print(f.start)
    122
    >>> print(f.end)
    150
    >>> print(f.strand)
    None

    Note the strand defaults to None. If you are working with nucleotide
    sequences you'd want to be explicit if it is the forward strand:

    >>> from Bio.SeqFeature import FeatureLocation
    >>> f = FeatureLocation(122, 150, strand=+1)
    >>> print(f)
    [122:150](+)
    >>> print(f.strand)
    1

    Note that for a parent sequence of length n, the FeatureLocation
    start and end must satisfy the inequality 0 <= start <= end <= n.
    This means even for features on the reverse strand of a nucleotide
    sequence, we expect the 'start' coordinate to be less than the
    'end'.

    >>> from Bio.SeqFeature import FeatureLocation
    >>> r = FeatureLocation(122, 150, strand=-1)
    >>> print(r)
    [122:150](-)
    >>> print(r.start)
    122
    >>> print(r.end)
    150
    >>> print(r.strand)
    -1

    i.e. Rather than thinking of the 'start' and 'end' biologically in a
    strand aware manor, think of them as the 'left most' or 'minimum'
    boundary, and the 'right most' or 'maximum' boundary of the region
    being described. This is particularly important with compound
    locations describing non-continuous regions.

    In the example above we have used standard exact positions, but there
    are also specialised position objects used to represent fuzzy positions
    as well, for example a GenBank location like complement(<123..150)
    would use a BeforePosition object for the start.
    """
    def __init__(self, start, end, strand=None, ref=None, ref_db=None):
        """Specify the start, end, strand etc of a sequence feature.

        start and end arguments specify the values where the feature begins
        and ends. These can either by any of the *Position objects that
        inherit from AbstractPosition, or can just be integers specifying the
        position. In the case of integers, the values are assumed to be
        exact and are converted in ExactPosition arguments. This is meant
        to make it easy to deal with non-fuzzy ends.

        i.e. Short form:

        >>> from Bio.SeqFeature import FeatureLocation
        >>> loc = FeatureLocation(5, 10, strand=-1)
        >>> print(loc)
        [5:10](-)

        Explicit form:

        >>> from Bio.SeqFeature import FeatureLocation, ExactPosition
        >>> loc = FeatureLocation(ExactPosition(5), ExactPosition(10), strand=-1)
        >>> print(loc)
        [5:10](-)

        Other fuzzy positions are used similarly,

        >>> from Bio.SeqFeature import FeatureLocation
        >>> from Bio.SeqFeature import BeforePosition, AfterPosition
        >>> loc2 = FeatureLocation(BeforePosition(5), AfterPosition(10), strand=-1)
        >>> print(loc2)
        [<5:>10](-)

        For nucleotide features you will also want to specify the strand,
        use 1 for the forward (plus) strand, -1 for the reverse (negative)
        strand, 0 for stranded but strand unknown (? in GFF3), or None for
        when the strand does not apply (dot in GFF3), e.g. features on
        proteins.

        >>> loc = FeatureLocation(5, 10, strand=+1)
        >>> print(loc)
        [5:10](+)
        >>> print(loc.strand)
        1

        Normally feature locations are given relative to the parent
        sequence you are working with, but an explicit accession can
        be given with the optional ref and db_ref strings:

        >>> loc = FeatureLocation(105172, 108462, ref="AL391218.9", strand=1)
        >>> print(loc)
        AL391218.9[105172:108462](+)
        >>> print(loc.ref)
        AL391218.9

        """
        #TODO - Check 0 <= start <= end (<= length of reference)
        if isinstance(start, AbstractPosition):
            self._start = start
        elif isinstance(start, int) or isinstance(start, long):
            self._start = ExactPosition(start)
        else:
            raise TypeError("start=%r %s" % (start, type(start)))
        if isinstance(end, AbstractPosition):
            self._end = end
        elif isinstance(end, int) or isinstance(end, long):
            self._end = ExactPosition(end)
        else:
            raise TypeError("end=%r %s" % (end, type(end)))
        self.strand = strand
        self.ref = ref
        self.ref_db = ref_db

    def _get_strand(self):
        return self._strand

    def _set_strand(self, value):
        if value not in [+1, -1, 0, None]:
            raise ValueError("Strand should be +1, -1, 0 or None, not %r"
                             % value)
        self._strand = value

    strand = property(fget = _get_strand, fset = _set_strand,
                      doc = "Strand of the location (+1, -1, 0 or None).")

    def __str__(self):
        """Returns a representation of the location (with python counting).

        For the simple case this uses the python splicing syntax, [122:150]
        (zero based counting) which GenBank would call 123..150 (one based
        counting).
        """
        answer = "[%s:%s]" % (self._start, self._end)
        if self.ref and self.ref_db:
            answer = "%s:%s%s" % (self.ref_db, self.ref, answer)
        elif self.ref:
            answer = self.ref + answer
        #Is ref_db without ref meaningful?
        if self.strand is None:
            return answer
        elif self.strand == +1:
            return answer + "(+)"
        elif self.strand == -1:
            return answer + "(-)"
        else:
            #strand = 0, stranded but strand unknown, ? in GFF3
            return answer + "(?)"

    def __repr__(self):
        """A string representation of the location for debugging."""
        optional = ""
        if self.strand is not None:
            optional += ", strand=%r" % self.strand
        if self.ref is not None:
            optional += ", ref=%r" % self.ref
        if self.ref_db is not None:
            optional += ", ref_db=%r" % self.ref_db
        return "%s(%r, %r%s)" \
                   % (self.__class__.__name__, self.start, self.end, optional)

    def __add__(self, other):
        """Combine location with another feature location, or shift it.

        You can add two feature locations to make a join CompoundLocation:

        >>> from Bio.SeqFeature import FeatureLocation
        >>> f1 = FeatureLocation(5, 10)
        >>> f2 = FeatureLocation(20, 30)
        >>> combined = f1 + f2
        >>> print(combined)
        join{[5:10], [20:30]}

        This is thus equivalent to:

        >>> from Bio.SeqFeature import CompoundLocation
        >>> join = CompoundLocation([f1, f2])
        >>> print(join)
        join{[5:10], [20:30]}

        You can also use sum(...) in this way:

        >>> join = sum([f1, f2])
        >>> print(join)
        join{[5:10], [20:30]}

        Furthermore, you can combine a FeatureLocation with a CompoundLocation
        in this way.

        Separately, adding an integer will give a new FeatureLocation with
        its start and end offset by that amount. For example:

        >>> print(f1)
        [5:10]
        >>> print(f1 + 100)
        [105:110]
        >>> print(200 + f1)
        [205:210]

        This can be useful when editing annotation.
        """
        if isinstance(other, FeatureLocation):
            return CompoundLocation([self, other])
        elif isinstance(other, int):
            return self._shift(other)
        else:
            #This will allow CompoundLocation's __radd__ to be called:
            return NotImplemented

    def __radd__(self, other):
        if isinstance(other, int):
            return self._shift(other)
        else:
            return NotImplemented

    def __nonzero__(self):
        """Returns True regardless of the length of the feature.

        This behaviour is for backwards compatibility, since until the
        __len__ method was added, a FeatureLocation always evaluated as True.

        Note that in comparison, Seq objects, strings, lists, etc, will all
        evaluate to False if they have length zero.

        WARNING: The FeatureLocation may in future evaluate to False when its
        length is zero (in order to better match normal python behaviour)!
        """
        return True

    def __len__(self):
        """Returns the length of the region described by the FeatureLocation.

        Note that extra care may be needed for fuzzy locations, e.g.

        >>> from Bio.SeqFeature import FeatureLocation
        >>> from Bio.SeqFeature import BeforePosition, AfterPosition
        >>> loc = FeatureLocation(BeforePosition(5), AfterPosition(10))
        >>> len(loc)
        5
        """
        return int(self._end) - int(self._start)

    def __contains__(self, value):
        """Check if an integer position is within the FeatureLocation.

        Note that extra care may be needed for fuzzy locations, e.g.

        >>> from Bio.SeqFeature import FeatureLocation
        >>> from Bio.SeqFeature import BeforePosition, AfterPosition
        >>> loc = FeatureLocation(BeforePosition(5), AfterPosition(10))
        >>> len(loc)
        5
        >>> [i for i in range(15) if i in loc]
        [5, 6, 7, 8, 9]
        """
        if not isinstance(value, int):
            raise ValueError("Currently we only support checking for integer "
                             "positions being within a FeatureLocation.")
        if value < self._start or value >= self._end:
            return False
        else:
            return True

    def __iter__(self):
        """Iterate over the parent positions within the FeatureLocation.

        >>> from Bio.SeqFeature import FeatureLocation
        >>> from Bio.SeqFeature import BeforePosition, AfterPosition
        >>> loc = FeatureLocation(BeforePosition(5), AfterPosition(10))
        >>> len(loc)
        5
        >>> for i in loc: print(i)
        5
        6
        7
        8
        9
        >>> list(loc)
        [5, 6, 7, 8, 9]
        >>> [i for i in range(15) if i in loc]
        [5, 6, 7, 8, 9]

        Note this is strand aware:

        >>> loc = FeatureLocation(BeforePosition(5), AfterPosition(10), strand = -1)
        >>> list(loc)
        [9, 8, 7, 6, 5]
        """
        if self.strand == -1:
            for i in range(self._end - 1, self._start - 1, -1):
                yield i
        else:
            for i in range(self._start, self._end):
                yield i

    def _shift(self, offset):
        """Returns a copy of the location shifted by the offset (PRIVATE)."""
        #TODO - What if offset is a fuzzy position?
        if self.ref or self.ref_db:
            #TODO - Return self?
            raise ValueError("Feature references another sequence.")
        return FeatureLocation(start = self._start._shift(offset),
                               end = self._end._shift(offset),
                               strand = self.strand)

    def _flip(self, length):
        """Returns a copy of the location after the parent is reversed (PRIVATE)."""
        if self.ref or self.ref_db:
            #TODO - Return self?
            raise ValueError("Feature references another sequence.")
        #Note this will flip the start and end too!
        if self.strand == +1:
            flip_strand = -1
        elif self.strand == -1:
            flip_strand = +1
        else:
            #0 or None
            flip_strand = self.strand
        return FeatureLocation(start = self._end._flip(length),
                               end = self._start._flip(length),
                               strand = flip_strand)

    @property
    def parts(self):
        """Read only list of parts (always one, the Feature Location).

        This is a convience property allowing you to write code handling
        both simple FeatureLocation objects (with one part) and more complex
        CompoundLocation objects (with multiple parts) interchangably.
        """
        return [self]

    @property
    def start(self):
        """Start location (integer like, possibly a fuzzy position, read only)."""
        return self._start

    @property
    def end(self):
        """End location (integer like, possibly a fuzzy position, read only)."""
        return self._end

    @property
    def nofuzzy_start(self):
        """Start position (integer, approximated if fuzzy, read only) (OBSOLETE).

        This is now an alias for int(feature.start), which should be
        used in preference -- unless you are trying to support old
        versions of Biopython.
        """
        try:
            return int(self._start)
        except TypeError:
            if isinstance(self._start, UnknownPosition):
                return None
            raise

    @property
    def nofuzzy_end(self):
        """End position (integer, approximated if fuzzy, read only) (OBSOLETE).

        This is now an alias for int(feature.end), which should be
        used in preference -- unless you are trying to support old
        versions of Biopython.
        """
        try:
            return int(self._end)
        except TypeError:
            if isinstance(self._end, UnknownPosition):
                return None
            raise

    def extract(self, parent_sequence):
        """Extract feature sequence from the supplied parent sequence."""
        if self.ref or self.ref_db:
            #TODO - Take a dictionary as an optional argument?
            raise ValueError("Feature references another sequence.")
        if isinstance(parent_sequence, MutableSeq):
            #This avoids complications with reverse complements
            #(the MutableSeq reverse complement acts in situ)
            parent_sequence = parent_sequence.toseq()
        f_seq = parent_sequence[self.nofuzzy_start:self.nofuzzy_end]
        if self.strand == -1:
            try:
                f_seq = f_seq.reverse_complement()
            except AttributeError:
                assert isinstance(f_seq, str)
                f_seq = reverse_complement(f_seq)
        return f_seq


class CompoundLocation(object):
    """For handling joins etc where a feature location has several parts."""
    def __init__(self, parts, operator="join"):
        """Create a compound location with several parts.

        >>> from Bio.SeqFeature import FeatureLocation, CompoundLocation
        >>> f1 = FeatureLocation(10, 40, strand=+1)
        >>> f2 = FeatureLocation(50, 59, strand=+1)
        >>> f = CompoundLocation([f1, f2])
        >>> len(f) == len(f1) + len(f2) == 39 == len(list(f))
        True
        >>> print(f.operator)
        join
        >>> 5 in f
        False
        >>> 15 in f
        True
        >>> f.strand
        1

        Notice that the strand of the compound location is computed
        automatically - in the case of mixed strands on the sub-locations
        the overall strand is set to None.

        >>> f = CompoundLocation([FeatureLocation(3, 6, strand=+1),
        ...                       FeatureLocation(10, 13, strand=-1)])
        >>> print(f.strand)
        None
        >>> len(f)
        6
        >>> list(f)
        [3, 4, 5, 12, 11, 10]

        The example above doing list(f) iterates over the coordinates within the
        feature. This allows you to use max and min on the location, to find the
        range covered:

        >>> min(f)
        3
        >>> max(f)
        12

        More generally, you can use the compound location's start and end which
        give the full range covered, 0 <= start <= end <= full sequence length.

        >>> f.start == min(f)
        True
        >>> f.end == max(f) + 1
        True

        This is consistent with the behaviour of the simple FeatureLocation for
        a single region, where again the 'start' and 'end' do not necessarily
        give the biological start and end, but rather the 'minimal' and 'maximal'
        coordinate boundaries.

        Note that adding locations provides a more intuitive method of
        construction:

        >>> f = FeatureLocation(3, 6, strand=+1) + FeatureLocation(10, 13, strand=-1)
        >>> len(f)
        6
        >>> list(f)
        [3, 4, 5, 12, 11, 10]
        """
        self.operator = operator
        self.parts = list(parts)
        for loc in self.parts:
            if not isinstance(loc, FeatureLocation):
                raise ValueError("CompoundLocation should be given a list of "
                                 "FeatureLocation objects, not %s" % loc.__class__)
        if len(parts) < 2:
            raise ValueError("CompoundLocation should have at least 2 parts, not %r" % parts)

    def __str__(self):
        """Returns a representation of the location (with python counting)."""
        return "%s{%s}" % (self.operator, ", ".join(str(loc) for loc in self.parts))

    def __repr__(self):
        """String representation of the location for debugging."""
        return "%s(%r, %r)" % (self.__class__.__name__, \
                               self.parts, self.operator)

    def _get_strand(self):
        # Historically a join on the reverse strand has been represented
        # in Biopython with both the parent SeqFeature and its children
        # (the exons for a CDS) all given a strand of -1.  Likewise, for
        # a join feature on the forward strand they all have strand +1.
        # However, we must also consider evil mixed strand examples like
        # this, join(complement(69611..69724),139856..140087,140625..140650)
        if len(set(loc.strand for loc in self.parts))==1:
            return self.parts[0].strand
        else:
            return None # i.e. mixed strands
    def _set_strand(self, value):
        # Should this be allowed/encouraged?
        for loc in self.parts:
            loc.strand = value
    strand = property(fget = _get_strand, fset = _set_strand,
                      doc = """Overall strand of the compound location.

        If all the parts have the same strand, that is returned. Otherwise
        for mixed strands, this returns None.

        >>> from Bio.SeqFeature import FeatureLocation, CompoundLocation
        >>> f1 = FeatureLocation(15, 17, strand=1)
        >>> f2 = FeatureLocation(20, 30, strand=-1)
        >>> f = f1 + f2
        >>> f1.strand
        1
        >>> f2.strand
        -1
        >>> f.strand
        >>> f.strand is None
        True

        If you set the strand of a CompoundLocation, this is applied to
        all the parts - use with caution:

        >>> f.strand = 1
        >>> f1.strand
        1
        >>> f2.strand
        1
        >>> f.strand
        1

        """)

    def __add__(self, other):
        """Combine locations, or shift the location by an integer offset.

        >>> from Bio.SeqFeature import FeatureLocation, CompoundLocation
        >>> f1 = FeatureLocation(15, 17) + FeatureLocation(20, 30)
        >>> print(f1)
        join{[15:17], [20:30]}

        You can add another FeatureLocation:

        >>> print(f1 + FeatureLocation(40, 50))
        join{[15:17], [20:30], [40:50]}
        >>> print(FeatureLocation(5, 10) + f1)
        join{[5:10], [15:17], [20:30]}

        You can also add another CompoundLocation:

        >>> f2 = FeatureLocation(40, 50) + FeatureLocation(60, 70)
        >>> print(f2)
        join{[40:50], [60:70]}
        >>> print(f1 + f2)
        join{[15:17], [20:30], [40:50], [60:70]}

        Also, as with the FeatureLocation, adding an integer shifts the
        location's co-ordinates by that offset:

        >>> print(f1 + 100)
        join{[115:117], [120:130]}
        >>> print(200 + f1)
        join{[215:217], [220:230]}
        >>> print(f1 + (-5))
        join{[10:12], [15:25]}
        """
        if isinstance(other, FeatureLocation):
            return CompoundLocation(self.parts + [other], self.operator)
        elif isinstance(other, CompoundLocation):
            if self.operator != other.operator:
                #Handle join+order -> order as a special case?
                raise ValueError("Mixed operators %s and %s" \
                                 % (self.operator, other.operator))
            return CompoundLocation(self.parts + other.parts, self.operator)
        elif isinstance(other, int):
            return self._shift(other)
        else:
            raise NotImplementedError

    def __radd__(self, other):
        """Combine locations."""
        if isinstance(other, FeatureLocation):
            return CompoundLocation([other] + self.parts, self.operator)
        elif isinstance(other, int):
            return self._shift(other)
        else:
            raise NotImplementedError


    def __contains__(self, value):
        """Check if an integer position is within the location."""
        for loc in self.parts:
            if value in loc:
                return True
        return False

    def __nonzero__(self):
        """Returns True regardless of the length of the feature.

        This behaviour is for backwards compatibility, since until the
        __len__ method was added, a FeatureLocation always evaluated as True.

        Note that in comparison, Seq objects, strings, lists, etc, will all
        evaluate to False if they have length zero.

        WARNING: The FeatureLocation may in future evaluate to False when its
        length is zero (in order to better match normal python behaviour)!
        """
        return True

    def __len__(self):
        return sum(len(loc) for loc in self.parts)

    def __iter__(self):
        for loc in self.parts:
            for pos in loc:
                yield pos

    def _shift(self, offset):
        """Returns a copy of the location shifted by the offset (PRIVATE)."""
        return CompoundLocation([loc._shift(offset) for loc in self.parts],
                                self.operator)

    def _flip(self, length):
        """Returns a copy of the location after the parent is reversed (PRIVATE).

        Note that the order of the parts is reversed too.
        """
        return CompoundLocation([loc._flip(length) for loc in self.parts[::-1]],
                                self.operator)

    @property
    def start(self):
        """Start location (integer like, possibly a fuzzy position, read only)."""
        return min(loc.start for loc in self.parts)

    @property
    def end(self):
        """End location (integer like, possibly a fuzzy position, read only)."""
        return max(loc.end for loc in self.parts)

    @property
    def nofuzzy_start(self):
        """Start position (integer, approximated if fuzzy, read only) (OBSOLETE).

        This is an alias for int(feature.start), which should be used in
        preference -- unless you are trying to support old versions of
        Biopython.
        """
        try:
            return int(self.start)
        except TypeError:
            if isinstance(self.start, UnknownPosition):
                return None
            raise

    @property
    def nofuzzy_end(self):
        """End position (integer, approximated if fuzzy, read only) (OBSOLETE).

        This is an alias for int(feature.end), which should be used in
        preference -- unless you are trying to support old versions of
        Biopython.
        """
        try:
            return int(self.end)
        except TypeError:
            if isinstance(self.end, UnknownPosition):
                return None
            raise

    @property
    def ref(self):
        """CompoundLocation's don't have a ref (dummy method for API compatibility)."""
        return None

    @property
    def ref_db(self):
        """CompoundLocation's don't have a ref_db (dummy method for API compatibility)."""
        return None

    def extract(self, parent_sequence):
        """Extract feature sequence from the supplied parent sequence."""
        #This copes with mixed strand features & all on reverse:
        parts = [loc.extract(parent_sequence) for loc in self.parts]
        #We use addition rather than a join to avoid alphabet issues:
        f_seq = parts[0]
        for part in parts[1:]:
            f_seq += part
        return f_seq


class AbstractPosition(object):
    """Abstract base class representing a position.
    """

    def __repr__(self):
        """String representation of the location for debugging."""
        return "%s(...)" % (self.__class__.__name__)


class ExactPosition(int, AbstractPosition):
    """Specify the specific position of a boundary.

    o position - The position of the boundary.
    o extension - An optional argument which must be zero since we don't
    have an extension. The argument is provided so that the same number of
    arguments can be passed to all position types.

    In this case, there is no fuzziness associated with the position.

    >>> p = ExactPosition(5)
    >>> p
    ExactPosition(5)
    >>> print(p)
    5

    >>> isinstance(p, AbstractPosition)
    True
    >>> isinstance(p, int)
    True

    Integer comparisons and operations should work as expected:

    >>> p == 5
    True
    >>> p < 6
    True
    >>> p <= 5
    True
    >>> p + 10
    15

    """
    def __new__(cls, position, extension = 0):
        if extension != 0:
            raise AttributeError("Non-zero extension %s for exact position."
                                 % extension)
        return int.__new__(cls, position)

    def __repr__(self):
        """String representation of the ExactPosition location for debugging."""
        return "%s(%i)" % (self.__class__.__name__, int(self))

    @property
    def position(self):
        """Legacy attribute to get position as integer (OBSOLETE)."""
        return int(self)

    @property
    def extension(self):
        """Legacy attribute to get extension (zero) as integer (OBSOLETE)."""
        return 0

    def _shift(self, offset):
        #By default preserve any subclass
        return self.__class__(int(self) + offset)

    def _flip(self, length):
        #By default perserve any subclass
        return self.__class__(length - int(self))


class UncertainPosition(ExactPosition):
    """Specify a specific position which is uncertain.

    This is used in UniProt, e.g. ?222 for uncertain position 222, or in the
    XML format explicitly marked as uncertain. Does not apply to GenBank/EMBL.
    """
    pass


class UnknownPosition(AbstractPosition):
    """Specify a specific position which is unknown (has no position).

    This is used in UniProt, e.g. ? or in the XML as unknown.
    """

    def __repr__(self):
        """String representation of the UnknownPosition location for debugging."""
        return "%s()" % self.__class__.__name__

    def __hash__(self):
        return hash(None)

    @property
    def position(self):
        """Legacy attribute to get position (None) (OBSOLETE)."""
        return None

    @property
    def extension(self):
        """Legacy attribute to get extension (zero) as integer (OBSOLETE)."""
        return 0

    def _shift(self, offset):
        return self

    def _flip(self, length):
        return self


class WithinPosition(int, AbstractPosition):
    """Specify the position of a boundary within some coordinates.

    Arguments:
    o position - The default integer position
    o left - The start (left) position of the boundary
    o right - The end (right) position of the boundary

    This allows dealing with a position like ((1.4)..100). This
    indicates that the start of the sequence is somewhere between 1
    and 4. Since this is a start coordinate, it should acts like
    it is at position 1 (or in Python counting, 0).

    >>> p = WithinPosition(10, 10, 13)
    >>> p
    WithinPosition(10, left=10, right=13)
    >>> print(p)
    (10.13)
    >>> int(p)
    10

    Basic integer comparisons and operations should work as though
    this were a plain integer:

    >>> p == 10
    True
    >>> p in [9, 10, 11]
    True
    >>> p < 11
    True
    >>> p + 10
    20

    >>> isinstance(p, WithinPosition)
    True
    >>> isinstance(p, AbstractPosition)
    True
    >>> isinstance(p, int)
    True

    Note this also applies for comparison to other position objects,
    where again the integer behaviour is used:

    >>> p == 10
    True
    >>> p == ExactPosition(10)
    True
    >>> p == BeforePosition(10)
    True
    >>> p == AfterPosition(10)
    True

    If this were an end point, you would want the position to be 13:

    >>> p2 = WithinPosition(13, 10, 13)
    >>> p2
    WithinPosition(13, left=10, right=13)
    >>> print(p2)
    (10.13)
    >>> int(p2)
    13
    >>> p2 == 13
    True
    >>> p2 == ExactPosition(13)
    True

    The old legacy properties of position and extension give the
    starting/lower/left position as an integer, and the distance
    to the ending/higher/right position as an integer. Note that
    the position object will act like either the left or the right
    end-point depending on how it was created:

    >>> p.position == p2.position == 10
    True
    >>> p.extension == p2.extension == 3
    True
    >>> int(p) == int(p2)
    False
    >>> p == 10
    True
    >>> p2 == 13
    True

    """
    def __new__(cls, position, left, right):
        assert position==left or position==right, \
            "WithinPosition: %r should match left %r or right %r" \
            (position, left, right)
        obj = int.__new__(cls, position)
        obj._left = left
        obj._right = right
        return obj

    def __repr__(self):
        """String representation of the WithinPosition location for debugging."""
        return "%s(%i, left=%i, right=%i)" \
               % (self.__class__.__name__, int(self),
                  self._left, self._right)

    def __str__(self):
        return "(%s.%s)" % (self._left, self._right)

    @property
    def position(self):
        """Legacy attribute to get (left) position as integer (OBSOLETE)."""
        return self._left

    @property
    def extension(self):
        """Legacy attribute to get extension (from left to right) as an integer (OBSOLETE)."""
        return self._right - self._left

    def _shift(self, offset):
        return self.__class__(int(self) + offset,
                              self._left + offset,
                              self._right + offset)

    def _flip(self, length):
        return self.__class__(length - int(self),
                              length - self._right,
                              length - self._left)


class BetweenPosition(int, AbstractPosition):
    """Specify the position of a boundary between two coordinates (OBSOLETE?).

    Arguments:
    o position - The default integer position
    o left - The start (left) position of the boundary
    o right - The end (right) position of the boundary

    This allows dealing with a position like 123^456. This
    indicates that the start of the sequence is somewhere between
    123 and 456. It is up to the parser to set the position argument
    to either boundary point (depending on if this is being used as
    a start or end of the feature). For example as a feature end:

    >>> p = BetweenPosition(456, 123, 456)
    >>> p
    BetweenPosition(456, left=123, right=456)
    >>> print(p)
    (123^456)
    >>> int(p)
    456

    Integer equality and comparison use the given position,

    >>> p == 456
    True
    >>> p in [455, 456, 457]
    True
    >>> p > 300
    True

    The old legacy properties of position and extension give the
    starting/lower/left position as an integer, and the distance
    to the ending/higher/right position as an integer. Note that
    the position object will act like either the left or the right
    end-point depending on how it was created:

    >>> p2 = BetweenPosition(123, left=123, right=456)
    >>> p.position == p2.position == 123
    True
    >>> p.extension
    333
    >>> p2.extension
    333
    >>> p.extension == p2.extension == 333
    True
    >>> int(p) == int(p2)
    False
    >>> p == 456
    True
    >>> p2 == 123
    True

    Note this potentially surprising behaviour:

    >>> BetweenPosition(123, left=123, right=456) == ExactPosition(123)
    True
    >>> BetweenPosition(123, left=123, right=456) == BeforePosition(123)
    True
    >>> BetweenPosition(123, left=123, right=456) == AfterPosition(123)
    True

    i.e. For equality (and sorting) the position objects behave like
    integers.
    """
    def __new__(cls, position, left, right):
        assert position==left or position==right
        obj = int.__new__(cls, position)
        obj._left = left
        obj._right = right
        return obj

    def __repr__(self):
        """String representation of the WithinPosition location for debugging."""
        return "%s(%i, left=%i, right=%i)" \
               % (self.__class__.__name__, int(self),
                  self._left, self._right)

    def __str__(self):
        return "(%s^%s)" % (self._left, self._right)

    @property
    def position(self):
        """Legacy attribute to get (left) position as integer (OBSOLETE)."""
        return self._left

    @property
    def extension(self):
        """Legacy attribute to get extension (from left to right) as an integer (OBSOLETE)."""
        return self._right - self._left

    def _shift(self, offset):
        return self.__class__(int(self) + offset,
                              self._left + offset,
                              self._right + offset)

    def _flip(self, length):
        return self.__class__(length - int(self),
                              length - self._right,
                              length - self._left)


class BeforePosition(int, AbstractPosition):
    """Specify a position where the actual location occurs before it.

    Arguments:
    o position - The upper boundary of where the location can occur.
    o extension - An optional argument which must be zero since we don't
    have an extension. The argument is provided so that the same number of
    arguments can be passed to all position types.

    This is used to specify positions like (<10..100) where the location
    occurs somewhere before position 10.

    >>> p = BeforePosition(5)
    >>> p
    BeforePosition(5)
    >>> print(p)
    <5
    >>> int(p)
    5
    >>> p + 10
    15

    Note this potentially surprising behaviour:

    >>> p == ExactPosition(5)
    True
    >>> p == AfterPosition(5)
    True

    Just remember that for equality and sorting the position objects act
    like integers.
    """
    #Subclasses int so can't use __init__
    def __new__(cls, position, extension = 0):
        if extension != 0:
            raise AttributeError("Non-zero extension %s for exact position."
                                 % extension)
        return int.__new__(cls, position)

    @property
    def position(self):
        """Legacy attribute to get position as integer (OBSOLETE)."""
        return int(self)

    @property
    def extension(self):
        """Legacy attribute to get extension (zero) as integer (OBSOLETE)."""
        return 0

    def __repr__(self):
        """A string representation of the location for debugging."""
        return "%s(%i)" % (self.__class__.__name__, int(self))

    def __str__(self):
        return "<%s" % self.position

    def _shift(self, offset):
        return self.__class__(int(self) + offset)

    def _flip(self, length):
        return AfterPosition(length - int(self))


class AfterPosition(int, AbstractPosition):
    """Specify a position where the actual location is found after it.

    Arguments:
    o position - The lower boundary of where the location can occur.
    o extension - An optional argument which must be zero since we don't
    have an extension. The argument is provided so that the same number of
    arguments can be passed to all position types.

    This is used to specify positions like (>10..100) where the location
    occurs somewhere after position 10.

    >>> p = AfterPosition(7)
    >>> p
    AfterPosition(7)
    >>> print(p)
    >7
    >>> int(p)
    7
    >>> p + 10
    17

    >>> isinstance(p, AfterPosition)
    True
    >>> isinstance(p, AbstractPosition)
    True
    >>> isinstance(p, int)
    True

    Note this potentially surprising behaviour:

    >>> p == ExactPosition(7)
    True
    >>> p == BeforePosition(7)
    True

    Just remember that for equality and sorting the position objects act
    like integers.
    """
    #Subclasses int so can't use __init__
    def __new__(cls, position, extension = 0):
        if extension != 0:
            raise AttributeError("Non-zero extension %s for exact position."
                                 % extension)
        return int.__new__(cls, position)

    @property
    def position(self):
        """Legacy attribute to get position as integer (OBSOLETE)."""
        return int(self)

    @property
    def extension(self):
        """Legacy attribute to get extension (zero) as integer (OBSOLETE)."""
        return 0

    def __repr__(self):
        """A string representation of the location for debugging."""
        return "%s(%i)" % (self.__class__.__name__, int(self))

    def __str__(self):
        return ">%s" % self.position

    def _shift(self, offset):
        return self.__class__(int(self) + offset)

    def _flip(self, length):
        return BeforePosition(length - int(self))


class OneOfPosition(int, AbstractPosition):
    """Specify a position where the location can be multiple positions.

    This models the GenBank 'one-of(1888,1901)' function, and tries
    to make this fit within the Biopython Position models. If this was
    a start position it should act like 1888, but as an end position 1901.

    >>> p = OneOfPosition(1888, [ExactPosition(1888), ExactPosition(1901)])
    >>> p
    OneOfPosition(1888, choices=[ExactPosition(1888), ExactPosition(1901)])
    >>> int(p)
    1888

    Interget comparisons and operators act like using int(p),

    >>> p == 1888
    True
    >>> p <= 1888
    True
    >>> p > 1888
    False
    >>> p + 100
    1988

    >>> isinstance(p, OneOfPosition)
    True
    >>> isinstance(p, AbstractPosition)
    True
    >>> isinstance(p, int)
    True

    The old legacy properties of position and extension give the
    starting/lowest/left-most position as an integer, and the
    distance to the ending/highest/right-most position as an integer.
    Note that the position object will act like one of the list of
    possible locations depending on how it was created:

    >>> p2 = OneOfPosition(1901, [ExactPosition(1888), ExactPosition(1901)])
    >>> p.position == p2.position == 1888
    True
    >>> p.extension == p2.extension == 13
    True
    >>> int(p) == int(p2)
    False
    >>> p == 1888
    True
    >>> p2 == 1901
    True

    """
    def __new__(cls, position, choices):
        """Initialize with a set of posssible positions.

        position_list is a list of AbstractPosition derived objects,
        specifying possible locations.

        position is an integer specifying the default behaviour.
        """
        assert position in choices, \
            "OneOfPosition: %r should match one of %r" % (position, choices)
        obj = int.__new__(cls, position)
        obj.position_choices = choices
        return obj

    @property
    def position(self):
        """Legacy attribute to get (left) position as integer (OBSOLETE)."""
        return min(int(pos) for pos in self.position_choices)

    @property
    def extension(self):
        """Legacy attribute to get extension as integer (OBSOLETE)."""
        positions = [int(pos) for pos in self.position_choices]
        return max(positions) - min(positions)

    def __repr__(self):
        """String representation of the OneOfPosition location for debugging."""
        return "%s(%i, choices=%r)" % (self.__class__.__name__,
                                       int(self), self.position_choices)

    def __str__(self):
        out = "one-of("
        for position in self.position_choices:
            out += "%s," % position
        # replace the last comma with the closing parenthesis
        out = out[:-1] + ")"
        return out

    def _shift(self, offset):
        return self.__class__(int(self) + offset,
                              [p._shift(offset) for p in self.position_choices])

    def _flip(self, length):
        return self.__class__(length - int(self),
                              [p._flip(length) for p in self.position_choices[::-1]])


class PositionGap(object):
    """Simple class to hold information about a gap between positions.
    """
    def __init__(self, gap_size):
        """Intialize with a position object containing the gap information.
        """
        self.gap_size = gap_size

    def __repr__(self):
        """A string representation of the position gap for debugging."""
        return "%s(%s)" % (self.__class__.__name__, repr(self.gap_size))

    def __str__(self):
        out = "gap(%s)" % self.gap_size
        return out


if __name__ == "__main__":
    from Bio._utils import run_doctest
    run_doctest()