1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
|
# Copyright 2009 by Cymon J. Cox. All rights reserved.
# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
"""Command line wrapper for the multiple alignment program MUSCLE.
"""
from __future__ import print_function
from Bio.Application import _Option, _Switch, AbstractCommandline
class MuscleCommandline(AbstractCommandline):
r"""Command line wrapper for the multiple alignment program MUSCLE.
http://www.drive5.com/muscle/
Example:
--------
>>> from Bio.Align.Applications import MuscleCommandline
>>> muscle_exe = r"C:\Program Files\Aligments\muscle3.8.31_i86win32.exe"
>>> in_file = r"C:\My Documents\unaligned.fasta"
>>> out_file = r"C:\My Documents\aligned.fasta"
>>> muscle_cline = MuscleCommandline(muscle_exe, input=in_file, out=out_file)
>>> print(muscle_cline)
"C:\Program Files\Aligments\muscle3.8.31_i86win32.exe" -in "C:\My Documents\unaligned.fasta" -out "C:\My Documents\aligned.fasta"
You would typically run the command line with muscle_cline() or via
the Python subprocess module, as described in the Biopython tutorial.
Citations:
----------
Edgar, Robert C. (2004), MUSCLE: multiple sequence alignment with high
accuracy and high throughput, Nucleic Acids Research 32(5), 1792-97.
Edgar, R.C. (2004) MUSCLE: a multiple sequence alignment method with
reduced time and space complexity. BMC Bioinformatics 5(1): 113.
Last checked against version: 3.7, briefly against 3.8
"""
def __init__(self, cmd="muscle", **kwargs):
CLUSTERING_ALGORITHMS = ["upgma", "upgmb", "neighborjoining"]
DISTANCE_MEASURES_ITER1 = ["kmer6_6", "kmer20_3", "kmer20_4", "kbit20_3",
"kmer4_6"]
DISTANCE_MEASURES_ITER2 = DISTANCE_MEASURES_ITER1 + \
["pctid_kimura", "pctid_log"]
OBJECTIVE_SCORES = ["sp", "ps", "dp", "xp", "spf", "spm"]
TREE_ROOT_METHODS = ["pseudo", "midlongestspan", "minavgleafdist"]
SEQUENCE_TYPES = ["protein", "nucleo", "auto"]
WEIGHTING_SCHEMES = ["none", "clustalw", "henikoff", "henikoffpb", "gsc", "threeway"]
self.parameters = [
# Can't use "in" as the final alias as this is a reserved word in python:
_Option(["-in", "in", "input"],
"Input filename",
filename=True,
equate=False),
_Option(["-out", "out"],
"Output filename",
filename=True,
equate=False),
_Switch(["-diags", "diags"],
"Find diagonals (faster for similar sequences)"),
_Switch(["-profile", "profile"],
"Perform a profile alignment"),
_Option(["-in1", "in1"],
"First input filename for profile alignment",
filename=True,
equate=False),
_Option(["-in2", "in2"],
"Second input filename for a profile alignment",
filename=True,
equate=False),
# anchorspacing Integer 32 Minimum spacing between
_Option(["-anchorspacing", "anchorspacing"],
"Minimum spacing between anchor columns",
checker_function=lambda x: isinstance(x, int),
equate=False),
# center Floating point [1] Center parameter.
# Should be negative.
_Option(["-center", "center"],
"Center parameter - should be negative",
checker_function=lambda x: isinstance(x, float),
equate=False),
# cluster1 upgma upgmb Clustering method.
_Option(["-cluster1", "cluster1"],
"Clustering method used in iteration 1",
checker_function=lambda x: x in CLUSTERING_ALGORITHMS,
equate=False),
# cluster2 upgmb cluster1 is used in
# neighborjoining iteration 1 and 2,
# cluster2 in later
# iterations.
_Option(["-cluster2", "cluster2"],
"Clustering method used in iteration 2",
checker_function=lambda x: x in CLUSTERING_ALGORITHMS,
equate=False),
# diaglength Integer 24 Minimum length of
# diagonal.
_Option(["-diaglength", "diaglength"],
"Minimum length of diagonal",
checker_function=lambda x: isinstance(x, int),
equate=True),
# diagmargin Integer 5 Discard this many
# positions at ends of
# diagonal.
_Option(["-diagmargin", "diagmargin"],
"Discard this many positions at ends of diagonal",
checker_function=lambda x: isinstance(x, int),
equate=False),
# distance1 kmer6_6 Kmer6_6 (amino) or Distance measure for
# kmer20_3 Kmer4_6 (nucleo) iteration 1.
# kmer20_4
# kbit20_3
# kmer4_6
_Option(["-distance1", "distance1"],
"Distance measure for iteration 1",
checker_function=lambda x: x in DISTANCE_MEASURES_ITER1,
equate=False),
# distance2 kmer6_6 pctid_kimura Distance measure for
# kmer20_3 iterations 2, 3 ...
# kmer20_4
# kbit20_3
# pctid_kimura
# pctid_log
_Option(["-distance2", "distance2"],
"Distance measure for iteration 2",
checker_function=lambda x: x in DISTANCE_MEASURES_ITER2,
equate=False),
# gapopen Floating point [1] The gap open score.
# Must be negative.
_Option(["-gapopen", "gapopen"],
"Gap open score - negative number",
checker_function=lambda x: isinstance(x, float),
equate=False),
# hydro Integer 5 Window size for
# determining whether a
# region is hydrophobic.
_Option(["-hydro", "hydro"],
"Window size for hydrophobic region",
checker_function=lambda x: isinstance(x, int),
equate=False),
# hydrofactor Floating point 1.2 Multiplier for gap
# open/close penalties in
# hydrophobic regions.
_Option(["-hydrofactor", "hydrofactor"],
"Multiplier for gap penalties in hydrophobic regions",
checker_function=lambda x: isinstance(x, float),
equate=False),
# log File name None. Log file name (delete
# existing file).
_Option(["-log", "log"],
"Log file name",
filename=True,
equate=False),
# loga File name None. Log file name (append
# to existing file).
_Option(["-loga", "loga"],
"Log file name (append to existing file)",
filename=True,
equate=False),
# maxdiagbreak Integer 1 Maximum distance
# between two diagonals
# that allows them to
# merge into one
# diagonal.
_Option(["-maxdiagbreak", "maxdiagbreak"],
"Maximum distance between two diagonals that allows "
"them to merge into one diagonal",
checker_function=lambda x: isinstance(x, int),
equate=False),
# maxhours Floating point None. Maximum time to run in
# hours. The actual time
# may exceed the
# requested limit by a
# few minutes. Decimals
# are allowed, so 1.5
# means one hour and 30
# minutes.
_Option(["-maxhours", "maxhours"],
"Maximum time to run in hours",
checker_function=lambda x: isinstance(x, float),
equate=False),
# maxiters Integer 1, 2 ... 16 Maximum number of
# iterations.
_Option(["-maxiters", "maxiters"],
"Maximum number of iterations",
checker_function=lambda x: isinstance(x, int),
equate=False),
# maxtrees Integer 1 Maximum number of new
# trees to build in
# iteration 2.
_Option(["-maxtrees", "maxtrees"],
"Maximum number of trees to build in iteration 2",
checker_function=lambda x: isinstance(x, int),
equate=False),
# minbestcolscore Floating point [1] Minimum score a column
# must have to be an
# anchor.
_Option(["-minbestcolscore", "minbestcolscore"],
"Minimum score a column must have to be an anchor",
checker_function=lambda x: isinstance(x, float),
equate=False),
# minsmoothscore Floating point [1] Minimum smoothed score
# a column must have to
# be an anchor.
_Option(["-minsmoothscore", "minsmoothscore"],
"Minimum smoothed score a column must have to "
"be an anchor",
checker_function=lambda x: isinstance(x, float),
equate=False),
# objscore sp spm Objective score used by
# ps tree dependent
# dp refinement.
# xp sp=sum-of-pairs score.
# spf spf=sum-of-pairs score
# spm (dimer approximation)
# spm=sp for < 100 seqs,
# otherwise spf
# dp=dynamic programming
# score.
# ps=average profile-
# sequence score.
# xp=cross profile score.
_Option(["-objscore", "objscore"],
"Objective score used by tree dependent refinement",
checker_function=lambda x: x in OBJECTIVE_SCORES,
equate=False),
# root1 pseudo pseudo Method used to root
_Option(["-root1", "root1"],
"Method used to root tree in iteration 1",
checker_function=lambda x: x in TREE_ROOT_METHODS,
equate=False),
# root2 midlongestspan tree; root1 is used in
# minavgleafdist iteration 1 and 2,
# root2 in later
# iterations.
_Option(["-root2", "root2"],
"Method used to root tree in iteration 2",
checker_function=lambda x: x in TREE_ROOT_METHODS,
equate=False),
# seqtype protein auto Sequence type.
# nucleo
# auto
_Option(["-seqtype", "seqtype"],
"Sequence type",
checker_function=lambda x: x in SEQUENCE_TYPES,
equate=False),
# smoothscoreceil Floating point [1] Maximum value of column
# score for smoothing
# purposes.
_Option(["-smoothscoreceil", "smoothscoreceil"],
"Maximum value of column score for smoothing",
checker_function=lambda x: isinstance(x, float),
equate=False),
# smoothwindow Integer 7 Window used for anchor
# column smoothing.
_Option(["-smoothwindow", "smoothwindow"],
"Window used for anchor column smoothing",
checker_function=lambda x: isinstance(x, int),
equate=False),
# SUEFF Floating point value 0.1 Constant used in UPGMB
# between 0 and 1. clustering. Determines
# the relative fraction
# of average linkage
# (SUEFF) vs. nearest-
# neighbor linkage (1
# SUEFF).
_Option(["-sueff", "sueff"],
"Constant used in UPGMB clustering",
checker_function=lambda x: isinstance(x, float),
equate=False),
# tree1 File name None Save tree produced in
_Option(["-tree1", "tree1"],
"Save Newick tree from iteration 1",
equate=False),
# tree2 first or second
# iteration to given file
# in Newick (Phylip-
# compatible) format.
_Option(["-tree2", "tree2"],
"Save Newick tree from iteration 2",
equate=False),
# weight1 none clustalw Sequence weighting
_Option(["-weight1", "weight1"],
"Weighting scheme used in iteration 1",
checker_function=lambda x: x in WEIGHTING_SCHEMES,
equate=False),
# weight2 henikoff scheme.
# henikoffpb weight1 is used in
# gsc iterations 1 and 2.
# clustalw weight2 is used for
# threeway tree-dependent
# refinement.
# none=all sequences have
# equal weight.
# henikoff=Henikoff &
# Henikoff weighting
# scheme.
# henikoffpb=Modified
# Henikoff scheme as used
# in PSI-BLAST.
# clustalw=CLUSTALW
# method.
# threeway=Gotoh three-
# way method.
_Option(["-weight2", "weight2"],
"Weighting scheme used in iteration 2",
checker_function=lambda x: x in WEIGHTING_SCHEMES,
equate=False),
# ################### FORMATS #######################################
# Multiple formats can be specified on the command line
# If -msf appears it will be used regardless of other formats
# specified. If -clw appears (and not -msf), clustalw format will be
# used regardless of other formats specified. If both -clw and
# -clwstrict are specified -clwstrict will be used regardless of
# other formats specified. If -fasta is specified and not -msf,
# -clw, or clwstrict, fasta will be used. If -fasta and -html are
# specified -fasta will be used. Only if -html is specified alone
# will html be used. I kid ye not.
# clw no Write output in CLUSTALW format (default is
# FASTA).
_Switch(["-clw", "clw"],
"Write output in CLUSTALW format (with a MUSCLE header)"),
# clwstrict no Write output in CLUSTALW format with the
# "CLUSTAL W (1.81)" header rather than the
# MUSCLE version. This is useful when a post-
# processing step is picky about the file
# header.
_Switch(["-clwstrict", "clwstrict"],
"Write output in CLUSTALW format with version 1.81 header"),
# fasta yes Write output in FASTA format. Alternatives
# include clw,
# clwstrict, msf and html.
_Switch(["-fasta", "fasta"],
"Write output in FASTA format"),
# html no Write output in HTML format (default is
# FASTA).
_Switch(["-html", "html"],
"Write output in HTML format"),
# msf no Write output in MSF format (default is
# FASTA).
_Switch(["-msf", "msf"],
"Write output in MSF format"),
# Phylip interleaved - undocumented as of 3.7
_Switch(["-phyi", "phyi"],
"Write output in PHYLIP interleaved format"),
# Phylip sequential - undocumented as of 3.7
_Switch(["-phys", "phys"],
"Write output in PHYLIP sequential format"),
# ################# Additional specified output files #########
_Option(["-phyiout", "phyiout"],
"Write PHYLIP interleaved output to specified filename",
filename=True,
equate=False),
_Option(["-physout", "physout"], "Write PHYLIP sequential format to specified filename",
filename=True,
equate=False),
_Option(["-htmlout", "htmlout"], "Write HTML output to specified filename",
filename=True,
equate=False),
_Option(["-clwout", "clwout"],
"Write CLUSTALW output (with MUSCLE header) to specified "
"filename",
filename=True,
equate=False),
_Option(["-clwstrictout", "clwstrictout"],
"Write CLUSTALW output (with version 1.81 header) to "
"specified filename",
filename=True,
equate=False),
_Option(["-msfout", "msfout"],
"Write MSF format output to specified filename",
filename=True,
equate=False),
_Option(["-fastaout", "fastaout"],
"Write FASTA format output to specified filename",
filename=True,
equate=False),
# ############# END FORMATS ###################################
# anchors yes Use anchor optimization in tree dependent
# refinement iterations.
_Switch(["-anchors", "anchors"],
"Use anchor optimisation in tree dependent "
"refinement iterations"),
# noanchors no Disable anchor optimization. Default is
# anchors.
_Switch(["-noanchors", "noanchors"],
"Do not use anchor optimisation in tree dependent "
"refinement iterations"),
# group yes Group similar sequences together in the
# output. This is the default. See also
# stable.
_Switch(["-group", "group"],
"Group similar sequences in output"),
# stable no Preserve input order of sequences in output
# file. Default is to group sequences by
# similarity (group).
_Switch(["-stable", "stable"],
"Do not group similar sequences in output (not supported in v3.8)"),
# ############# log-expectation profile score ######################
# One of either -le, -sp, or -sv
#
# According to the doc, spn is default and the only option for
# nucleotides: this doesn't appear to be true. -le, -sp, and -sv can
# be used and produce numerically different logs (what is going on?)
#
# spn fails on proteins
# le maybe Use log-expectation profile score (VTML240).
# Alternatives are to use sp or sv. This is
# the default for amino acid sequences.
_Switch(["-le", "le"],
"Use log-expectation profile score (VTML240)"),
# sv no Use sum-of-pairs profile score (VTML240).
# Default is le.
_Switch(["-sv", "sv"],
"Use sum-of-pairs profile score (VTML240)"),
# sp no Use sum-of-pairs protein profile score
# (PAM200). Default is le.
_Switch(["-sp", "sp"],
"Use sum-of-pairs protein profile score (PAM200)"),
# spn maybe Use sum-of-pairs nucleotide profile score
# (BLASTZ parameters). This is the only option
# for nucleotides, and is therefore the
# default.
_Switch(["-spn", "spn"],
"Use sum-of-pairs protein nucleotide profile score"),
# ############# END log-expectation profile score ######################
# quiet no Do not display progress messages.
_Switch(["-quiet", "quiet"],
"Use sum-of-pairs protein nucleotide profile score"),
# refine no Input file is already aligned, skip first
# two iterations and begin tree dependent
# refinement.
_Switch(["-refine", "refine"],
"Only do tree dependent refinement"),
# core yes in muscle, Do not catch exceptions.
# no in muscled.
_Switch(["-core", "core"],
"Catch exceptions"),
# nocore no in muscle, Catch exceptions and give an error message
# yes in muscled. if possible.
_Switch(["-nocore", "nocore"],
"Do not catch exceptions"),
# termgapsfull no Terminal gaps penalized with full penalty.
# [1] Not fully supported in this version.
#
# termgapshalf yes Terminal gaps penalized with half penalty.
# [1] Not fully supported in this version.
#
# termgapshalflonger no Terminal gaps penalized with half penalty if
# gap relative to
# longer sequence, otherwise with full
# penalty.
# [1] Not fully supported in this version.
# verbose no Write parameter settings and progress
# messages to log file.
_Switch(["-verbose", "verbose"],
"Write parameter settings and progress"),
# version no Write version string to stdout and exit.
_Switch(["-version", "version"],
"Write version string to stdout and exit"),
]
AbstractCommandline.__init__(self, cmd, **kwargs)
if __name__ == "__main__":
from Bio._utils import run_doctest
run_doctest()
|