1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
|
# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
#
"""Deal with Motifs or Signatures allowing ambiguity in the sequences.
This class contains Schema which deal with Motifs and Signatures at
a higher level, by introducing \`don't care\` (ambiguity) symbols into
the sequences. For instance, you could combine the following Motifs:
'GATC', 'GATG', 'GATG', 'GATT'
as all falling under a schema like 'GAT*', where the star indicates a
character can be anything. This helps us condense a whole ton of
motifs or signatures.
"""
# standard modules
from __future__ import print_function
import random
import re
from Bio._py3k import range
from Bio import Alphabet
from Bio.Seq import MutableSeq
# neural network libraries
from .Pattern import PatternRepository
# genetic algorithm libraries
from Bio.GA import Organism
from Bio.GA.Evolver import GenerationEvolver
from Bio.GA.Mutation.Simple import SinglePositionMutation
from Bio.GA.Crossover.Point import SinglePointCrossover
from Bio.GA.Repair.Stabilizing import AmbiguousRepair
from Bio.GA.Selection.Tournament import TournamentSelection
from Bio.GA.Selection.Diversity import DiversitySelection
class Schema(object):
"""Deal with motifs that have ambiguity characters in it.
This motif class allows specific ambiguity characters and tries to
speed up finding motifs using regular expressions.
This is likely to be a replacement for the Schema representation,
since it allows multiple ambiguity characters to be used.
"""
def __init__(self, ambiguity_info):
"""Initialize with ambiguity information.
Arguments:
o ambiguity_info - A dictionary which maps letters in the motifs to
the ambiguous characters which they might represent. For example,
{'R' : 'AG'} specifies that Rs in the motif can match an A or a G.
All letters in the motif must be represented in the ambiguity_info
dictionary.
"""
self._ambiguity_info = ambiguity_info
# a cache of all encoded motifs
self._motif_cache = {}
def encode_motif(self, motif):
"""Encode the passed motif as a regular expression pattern object.
Arguments:
o motif - The motif we want to encode. This should be a string.
Returns:
A compiled regular expression pattern object that can be used
for searching strings.
"""
regexp_string = ""
for motif_letter in motif:
try:
letter_matches = self._ambiguity_info[motif_letter]
except KeyError:
raise KeyError("No match information for letter %s"
% motif_letter)
if len(letter_matches) > 1:
regexp_match = "[" + letter_matches + "]"
elif len(letter_matches) == 1:
regexp_match = letter_matches
else:
raise ValueError("Unexpected match information %s"
% letter_matches)
regexp_string += regexp_match
return re.compile(regexp_string)
def find_ambiguous(self, motif):
"""Return the location of ambiguous items in the motif.
This just checks through the motif and compares each letter
against the ambiguity information. If a letter stands for multiple
items, it is ambiguous.
"""
ambig_positions = []
for motif_letter_pos in range(len(motif)):
motif_letter = motif[motif_letter_pos]
try:
letter_matches = self._ambiguity_info[motif_letter]
except KeyError:
raise KeyError("No match information for letter %s"
% motif_letter)
if len(letter_matches) > 1:
ambig_positions.append(motif_letter_pos)
return ambig_positions
def num_ambiguous(self, motif):
"""Return the number of ambiguous letters in a given motif.
"""
ambig_positions = self.find_ambiguous(motif)
return len(ambig_positions)
def find_matches(self, motif, query):
"""Return all non-overlapping motif matches in the query string.
This utilizes the regular expression findall function, and will
return a list of all non-overlapping occurrences in query that
match the ambiguous motif.
"""
try:
motif_pattern = self._motif_cache[motif]
except KeyError:
motif_pattern = self.encode_motif(motif)
self._motif_cache[motif] = motif_pattern
return motif_pattern.findall(query)
def num_matches(self, motif, query):
"""Find the number of non-overlapping times motif occurs in query.
"""
all_matches = self.find_matches(motif, query)
return len(all_matches)
def all_unambiguous(self):
"""Return a listing of all unambiguous letters allowed in motifs.
"""
all_letters = sorted(self._ambiguity_info)
unambig_letters = []
for letter in all_letters:
possible_matches = self._ambiguity_info[letter]
if len(possible_matches) == 1:
unambig_letters.append(letter)
return unambig_letters
# --- helper classes and functions for the default SchemaFinder
# -- Alphabets
class SchemaDNAAlphabet(Alphabet.Alphabet):
"""Alphabet of a simple Schema for DNA sequences.
This defines a simple alphabet for DNA sequences that has a single
character which can match any other character.
o G,A,T,C - The standard unambiguous DNA alphabet.
o * - Any letter
"""
letters = ["G", "A", "T", "C", "*"]
alphabet_matches = {"G": "G",
"A": "A",
"T": "T",
"C": "C",
"*": "GATC"}
# -- GA schema finder
class GeneticAlgorithmFinder(object):
"""Find schemas using a genetic algorithm approach.
This approach to finding schema uses Genetic Algorithms to evolve
a set of schema and find the best schema for a specific set of
records.
The 'default' finder searches for ambiguous DNA elements. This
can be overridden easily by creating a GeneticAlgorithmFinder
with a different alphabet.
"""
def __init__(self, alphabet=SchemaDNAAlphabet()):
"""Initialize a finder to get schemas using Genetic Algorithms.
Arguments:
o alphabet -- The alphabet which specifies the contents of the
schemas we'll be generating. This alphabet must contain the
attribute 'alphabet_matches', which is a dictionary specifying
the potential ambiguities of each letter in the alphabet. These
ambiguities will be used in building up the schema.
"""
self.alphabet = alphabet
self.initial_population = 500
self.min_generations = 10
self._set_up_genetic_algorithm()
def _set_up_genetic_algorithm(self):
"""Overrideable function to set up the genetic algorithm parameters.
This functions sole job is to set up the different genetic
algorithm functionality. Since this can be quite complicated, this
allows cusotmizablity of all of the parameters. If you want to
customize specially, you can inherit from this class and override
this function.
"""
self.motif_generator = RandomMotifGenerator(self.alphabet)
self.mutator = SinglePositionMutation(mutation_rate=0.1)
self.crossover = SinglePointCrossover(crossover_prob=0.25)
self.repair = AmbiguousRepair(Schema(self.alphabet.alphabet_matches),
4)
self.base_selector = TournamentSelection(self.mutator, self.crossover,
self.repair, 2)
self.selector = DiversitySelection(self.base_selector,
self.motif_generator.random_motif)
def find_schemas(self, fitness, num_schemas):
"""Find the given number of unique schemas using a genetic algorithm
Arguments:
o fitness - A callable object (ie. function) which will evaluate
the fitness of a motif.
o num_schemas - The number of unique schemas with good fitness
that we want to generate.
"""
start_population = \
Organism.function_population(self.motif_generator.random_motif,
self.initial_population,
fitness)
finisher = SimpleFinisher(num_schemas, self.min_generations)
# set up the evolver and do the evolution
evolver = GenerationEvolver(start_population, self.selector)
evolved_pop = evolver.evolve(finisher.is_finished)
# convert the evolved population into a PatternRepository
schema_info = {}
for org in evolved_pop:
# convert the Genome from a MutableSeq to a Seq so that
# the schemas are just strings (and not array("c")s)
seq_genome = org.genome.toseq()
schema_info[str(seq_genome)] = org.fitness
return PatternRepository(schema_info)
# -- fitness classes
class DifferentialSchemaFitness(object):
"""Calculate fitness for schemas that differentiate between sequences.
"""
def __init__(self, positive_seqs, negative_seqs, schema_evaluator):
"""Initialize with different sequences to evaluate
Arguments:
o positive_seq - A list of SeqRecord objects which are the 'positive'
sequences -- the ones we want to select for.
o negative_seq - A list of SeqRecord objects which are the 'negative'
sequences that we want to avoid selecting.
o schema_evaluator - An Schema class which can be used to
evaluate find motif matches in sequences.
"""
self._pos_seqs = positive_seqs
self._neg_seqs = negative_seqs
self._schema_eval = schema_evaluator
def calculate_fitness(self, genome):
"""Calculate the fitness for a given schema.
Fitness is specified by the number of occurrences of the schema in
the positive sequences minus the number of occurrences in the
negative examples.
This fitness is then modified by multiplying by the length of the
schema and then dividing by the number of ambiguous characters in
the schema. This helps select for schema which are longer and have
less redundancy.
"""
# convert the genome into a string
seq_motif = genome.toseq()
motif = str(seq_motif)
# get the counts in the positive examples
num_pos = 0
for seq_record in self._pos_seqs:
cur_counts = self._schema_eval.num_matches(motif,
str(seq_record.seq))
num_pos += cur_counts
# get the counts in the negative examples
num_neg = 0
for seq_record in self._neg_seqs:
cur_counts = self._schema_eval.num_matches(motif,
str(seq_record.seq))
num_neg += cur_counts
num_ambiguous = self._schema_eval.num_ambiguous(motif)
# weight the ambiguous stuff more highly
num_ambiguous = pow(2.0, num_ambiguous)
# increment num ambiguous to prevent division by zero errors.
num_ambiguous += 1
motif_size = len(motif)
motif_size = motif_size * 4.0
discerning_power = num_pos - num_neg
diff = (discerning_power * motif_size) / float(num_ambiguous)
return diff
class MostCountSchemaFitness(object):
"""Calculate a fitness giving weight to schemas that match many times.
This fitness function tries to maximize schemas which are found many
times in a group of sequences.
"""
def __init__(self, seq_records, schema_evaluator):
"""Initialize with sequences to evaluate.
Arguments:
o seq_records -- A set of SeqRecord objects which we use to
calculate the fitness.
o schema_evaluator - An Schema class which can be used to
evaluate find motif matches in sequences.
"""
self._records = seq_records
self._evaluator = schema_evaluator
def calculate_fitness(self, genome):
"""Calculate the fitness of a genome based on schema matches.
This bases the fitness of a genome completely on the number of times
it matches in the set of seq_records. Matching more times gives a
better fitness
"""
# convert the genome into a string
seq_motif = genome.toseq()
motif = str(seq_motif)
# find the number of times the genome matches
num_times = 0
for seq_record in self._records:
cur_counts = self._evaluator.num_matches(motif,
str(seq_record.seq))
num_times += cur_counts
return num_times
# -- Helper classes
class RandomMotifGenerator(object):
"""Generate a random motif within given parameters.
"""
def __init__(self, alphabet, min_size=12, max_size=17):
"""Initialize with the motif parameters.
Arguments:
o alphabet - An alphabet specifying what letters can be inserted in
a motif.
o min_size, max_size - Specify the range of sizes for motifs.
"""
self._alphabet = alphabet
self._min_size = min_size
self._max_size = max_size
def random_motif(self):
"""Create a random motif within the given parameters.
This returns a single motif string with letters from the given
alphabet. The size of the motif will be randomly chosen between
max_size and min_size.
"""
motif_size = random.randrange(self._min_size, self._max_size)
motif = ""
for letter_num in range(motif_size):
cur_letter = random.choice(self._alphabet.letters)
motif += cur_letter
return MutableSeq(motif, self._alphabet)
class SimpleFinisher(object):
"""Determine when we are done evolving motifs.
This takes the very simple approach of halting evolution when the
GA has proceeded for a specified number of generations and has
a given number of unique schema with positive fitness.
"""
def __init__(self, num_schemas, min_generations=100):
"""Initialize the finisher with its parameters.
Arguments:
o num_schemas -- the number of useful (positive fitness) schemas
we want to generation
o min_generations -- The minimum number of generations to allow
the GA to proceed.
"""
self.num_generations = 0
self.num_schemas = num_schemas
self.min_generations = min_generations
def is_finished(self, organisms):
"""Determine when we can stop evolving the population.
"""
self.num_generations += 1
# print "generation %s" % self.num_generations
if self.num_generations >= self.min_generations:
all_seqs = []
for org in organisms:
if org.fitness > 0:
if org.genome not in all_seqs:
all_seqs.append(org.genome)
if len(all_seqs) >= self.num_schemas:
return 1
return 0
# ---
class SchemaFinder(object):
"""Find schema in a set of sequences using a genetic algorithm approach.
Finding good schemas is very difficult because it takes forever to
enumerate all of the potential schemas. This finder using a genetic
algorithm approach to evolve good schema which match many times in
a set of sequences.
The default implementation of the finder is ready to find schemas
in a set of DNA sequences, but the finder can be customized to deal
with any type of data.
"""
def __init__(self, num_schemas=100,
schema_finder=GeneticAlgorithmFinder()):
self.num_schemas = num_schemas
self._finder = schema_finder
self.evaluator = Schema(self._finder.alphabet.alphabet_matches)
def find(self, seq_records):
"""Find well-represented schemas in the given set of SeqRecords.
"""
fitness_evaluator = MostCountSchemaFitness(seq_records,
self.evaluator)
return self._finder.find_schemas(fitness_evaluator.calculate_fitness,
self.num_schemas)
def find_differences(self, first_records, second_records):
"""Find schemas which differentiate between the two sets of SeqRecords.
"""
fitness_evaluator = DifferentialSchemaFitness(first_records,
second_records,
self.evaluator)
return self._finder.find_schemas(fitness_evaluator.calculate_fitness,
self.num_schemas)
class SchemaCoder(object):
"""Convert a sequence into a representation of ambiguous motifs (schemas).
This takes a sequence, and returns the number of times specified
motifs are found in the sequence. This lets you represent a sequence
as just a count of (possibly ambiguous) motifs.
"""
def __init__(self, schemas, ambiguous_converter):
"""Initialize the coder to convert sequences
Arguments:
o schema - A list of all of the schemas we want to search for
in input sequences.
o ambiguous_converter - An Schema class which can be
used to convert motifs into regular expressions for searching.
"""
self._schemas = schemas
self._converter = ambiguous_converter
def representation(self, sequence):
"""Represent the given input sequence as a bunch of motif counts.
Arguments:
o sequence - A Bio.Seq object we are going to represent as schemas.
This takes the sequence, searches for the motifs within it, and then
returns counts specifying the relative number of times each motifs
was found. The frequencies are in the order the original motifs were
passed into the initializer.
"""
schema_counts = []
for schema in self._schemas:
num_counts = self._converter.num_matches(schema, str(sequence))
schema_counts.append(num_counts)
# normalize the counts to go between zero and one
min_count = 0
max_count = max(schema_counts)
# only normalize if we've actually found something, otherwise
# we'll just return 0 for everything
if max_count > 0:
for count_num in range(len(schema_counts)):
schema_counts[count_num] = (float(schema_counts[count_num]) -
float(min_count)) / float(max_count)
return schema_counts
def matches_schema(pattern, schema, ambiguity_character='*'):
"""Determine whether or not the given pattern matches the schema.
Arguments:
o pattern - A string representing the pattern we want to check for
matching. This pattern can contain ambiguity characters (which are
assumed to be the same as those in the schema).
o schema - A string schema with ambiguity characters.
o ambiguity_character - The character used for ambiguity in the schema.
"""
if len(pattern) != len(schema):
return 0
# check each position, and return a non match if the schema and pattern
# are non ambiguous and don't match
for pos in range(len(pattern)):
if schema[pos] != ambiguity_character and \
pattern[pos] != ambiguity_character and \
pattern[pos] != schema[pos]:
return 0
return 1
class SchemaFactory(object):
"""Generate Schema from inputs of Motifs or Signatures.
"""
def __init__(self, ambiguity_symbol='*'):
"""Initialize the SchemaFactory
Arguments:
o ambiguity_symbol -- The symbol to use when specifying that
a position is arbitrary.
"""
self._ambiguity_symbol = ambiguity_symbol
def from_motifs(self, motif_repository, motif_percent, num_ambiguous):
"""Generate schema from a list of motifs.
Arguments:
o motif_repository - A MotifRepository class that has all of the
motifs we want to convert to Schema.
o motif_percent - The percentage of motifs in the motif bank which
should be matches. We'll try to create schema that match this
percentage of motifs.
o num_ambiguous - The number of ambiguous characters to include
in each schema. The positions of these ambiguous characters will
be randomly selected.
"""
# get all of the motifs we can deal with
all_motifs = motif_repository.get_top_percentage(motif_percent)
# start building up schemas
schema_info = {}
# continue until we've built schema matching the desired percentage
# of motifs
total_count = self._get_num_motifs(motif_repository, all_motifs)
matched_count = 0
assert total_count > 0, "Expected to have motifs to match"
while (float(matched_count) / float(total_count)) < motif_percent:
new_schema, matching_motifs = \
self._get_unique_schema(list(schema_info.keys()),
all_motifs, num_ambiguous)
# get the number of counts for the new schema and clean up
# the motif list
schema_counts = 0
for motif in matching_motifs:
# get the counts for the motif
schema_counts += motif_repository.count(motif)
# remove the motif from the motif list since it is already
# represented by this schema
all_motifs.remove(motif)
# all the schema info
schema_info[new_schema] = schema_counts
matched_count += schema_counts
# print "percentage:", float(matched_count) / float(total_count)
return PatternRepository(schema_info)
def _get_num_motifs(self, repository, motif_list):
"""Return the number of motif counts for the list of motifs.
"""
motif_count = 0
for motif in motif_list:
motif_count += repository.count(motif)
return motif_count
def _get_unique_schema(self, cur_schemas, motif_list, num_ambiguous):
"""Retrieve a unique schema from a motif.
We don't want to end up with schema that match the same thing,
since this could lead to ambiguous results, and be messy. This
tries to create schema, and checks that they do not match any
currently existing schema.
"""
# create a schema starting with a random motif
# we'll keep doing this until we get a completely new schema that
# doesn't match any old schema
num_tries = 0
while True:
# pick a motif to work from and make a schema from it
cur_motif = random.choice(motif_list)
num_tries += 1
new_schema, matching_motifs = \
self._schema_from_motif(cur_motif, motif_list,
num_ambiguous)
has_match = 0
for old_schema in cur_schemas:
if matches_schema(new_schema, old_schema,
self._ambiguity_symbol):
has_match = 1
# if the schema doesn't match any other schema we've got
# a good one
if not(has_match):
break
# check for big loops in which we can't find a new schema
assert num_tries < 150, \
"Could not generate schema in %s tries from %s with %s" \
% (num_tries, motif_list, cur_schemas)
return new_schema, matching_motifs
def _schema_from_motif(self, motif, motif_list, num_ambiguous):
"""Create a schema from a given starting motif.
Arguments:
o motif - A motif with the pattern we will start from.
o motif_list - The total motifs we have.to match to.
o num_ambiguous - The number of ambiguous characters that should
be present in the schema.
Returns:
o A string representing the newly generated schema.
o A list of all of the motifs in motif_list that match the schema.
"""
assert motif in motif_list, \
"Expected starting motif present in remaining motifs."
# convert random positions in the motif to ambiguous characters
# convert the motif into a list of characters so we can manipulate it
new_schema_list = list(motif)
for add_ambiguous in range(num_ambiguous):
# add an ambiguous position in a new place in the motif
while True:
ambig_pos = random.choice(list(range(len(new_schema_list))))
# only add a position if it isn't already ambiguous
# otherwise, we'll try again
if new_schema_list[ambig_pos] != self._ambiguity_symbol:
new_schema_list[ambig_pos] = self._ambiguity_symbol
break
# convert the schema back to a string
new_schema = ''.join(new_schema_list)
# get the motifs that the schema matches
matched_motifs = []
for motif in motif_list:
if matches_schema(motif, new_schema, self._ambiguity_symbol):
matched_motifs.append(motif)
return new_schema, matched_motifs
def from_signatures(self, signature_repository, num_ambiguous):
raise NotImplementedError("Still need to code this.")
|