1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
# Copyright (C) 2011 by Brandon Invergo (b.invergo@gmail.com)
# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
import re
line_floats_re = re.compile("-*\d+\.\d+")
def parse_basics(lines, results):
"""Parse the basics that should be present in most baseml results files.
"""
version_re = re.compile("BASEML \(in paml version (\d+\.\d+[a-z]*).*")
np_re = re.compile("lnL\(ntime:\s+\d+\s+np:\s+(\d+)\)")
num_params = -1
for line in lines:
# Find all floating point numbers in this line
line_floats_res = line_floats_re.findall(line)
line_floats = [float(val) for val in line_floats_res]
# Find the version number
# Example match:
# "BASEML (in paml version 4.3, August 2009) alignment.phylip"
version_res = version_re.match(line)
if version_res is not None:
results["version"] = version_res.group(1)
# Find max lnL
# Example match:
# ln Lmax (unconstrained) = -316.049385
if "ln Lmax" in line and len(line_floats) == 1:
results["lnL max"] = line_floats[0]
# Find lnL values.
# Example match (lnL = -2021.348300):
# "lnL(ntime: 19 np: 22): -2021.348300 +0.000000"
elif "lnL(ntime:" in line and line_floats:
results["lnL"] = line_floats[0]
np_res = np_re.match(line)
if np_res is not None:
num_params = int(np_res.group(1))
# Find tree lengths.
# Example match: "tree length = 1.71931"
elif "tree length" in line and len(line_floats) == 1:
results["tree length"] = line_floats[0]
# Find the estimated tree, only taking the tree if it has
# branch lengths
elif re.match("\(+", line) is not None:
if ":" in line:
results["tree"] = line.strip()
return (results, num_params)
def parse_parameters(lines, results, num_params):
"""Parse the various parameters from the file.
"""
parameters = {}
parameters = parse_parameter_list(lines, parameters, num_params)
parameters = parse_kappas(lines, parameters)
parameters = parse_rates(lines, parameters)
parameters = parse_freqs(lines, parameters)
results["parameters"] = parameters
return results
def parse_parameter_list(lines, parameters, num_params):
"""Parse the parameters list, which is just an unlabeled list of numeric values.
"""
for line_num in range(len(lines)):
line = lines[line_num]
# Find all floating point numbers in this line
line_floats_res = line_floats_re.findall(line)
line_floats = [float(val) for val in line_floats_res]
# Get parameter list. This can be useful for specifying starting
# parameters in another run by copying the list of parameters
# to a file called in.baseml. Since the parameters must be in
# a fixed order and format, copying and pasting to the file is
# best. For this reason, they are grabbed here just as a long
# string and not as individual numbers.
if len(line_floats) == num_params:
parameters["parameter list"] = line.strip()
# Find SEs. The same format as parameters above is maintained
# since there is a correspondence between the SE format and
# the parameter format.
# Example match:
# "SEs for parameters:
# -1.00000 -1.00000 -1.00000 801727.63247 730462.67590 -1.00000
if "SEs for parameters:" in lines[line_num + 1]:
SEs_line = lines[line_num + 2]
parameters["SEs"] = SEs_line.strip()
break
return parameters
def parse_kappas(lines, parameters):
"""Parse out the kappa parameters.
"""
kappa_found = False
for line in lines:
# Find all floating point numbers in this line
line_floats_res = line_floats_re.findall(line)
line_floats = [float(val) for val in line_floats_res]
# Find kappa parameter (F84, HKY85, T92 model)
# Example match:
# "Parameters (kappa) in the rate matrix (F84) (Yang 1994 J Mol Evol 39:105-111):
# 3.00749"
if "Parameters (kappa)" in line:
kappa_found = True
elif kappa_found and line_floats:
branch_res = re.match("\s(\d+\.\.\d+)", line)
if branch_res is None:
if len(line_floats) == 1:
parameters["kappa"] = line_floats[0]
else:
parameters["kappa"] = line_floats
kappa_found = False
else:
if parameters.get("branches") is None:
parameters["branches"] = {}
branch = branch_res.group(1)
if line_floats:
parameters["branches"][branch] = \
{"t": line_floats[0], "kappa": line_floats[1],
"TS": line_floats[2], "TV": line_floats[3]}
# Find kappa under REV
# Example match:
# kappa under REV: 999.00000 145.76453 0.00001 0.00001 0.00001
elif "kappa under" in line and line_floats:
if len(line_floats) == 1:
parameters["kappa"] = line_floats[0]
else:
parameters["kappa"] = line_floats
return parameters
def parse_rates(lines, parameters):
"""Parse the rate parameters.
"""
Q_mat_found = False
trans_probs_found = False
for line in lines:
# Find all floating point numbers in this line
line_floats_res = line_floats_re.findall(line)
line_floats = [float(val) for val in line_floats_res]
# Find rate parameters
# Example match:
# "Rate parameters: 999.00000 145.59775 0.00001 0.00001 0.00001"
if "Rate parameters:" in line and line_floats:
parameters["rate parameters"] = line_floats
# Find rates
# Example match:
# "rate: 0.90121 0.96051 0.99831 1.03711 1.10287"
elif "rate: " in line and line_floats:
parameters["rates"] = line_floats
# Find Rate matrix Q & average kappa (REV model)
# Example match:
# Rate matrix Q, Average Ts/Tv = 3.0308
# -2.483179 1.865730 0.617449 0.000000
# 2.298662 -2.298662 0.000000 0.000000
# 0.335015 0.000000 -0.338059 0.003044
# 0.000000 0.000000 0.004241 -0.004241
elif "matrix Q" in line:
parameters["Q matrix"] = {"matrix": []}
if line_floats:
parameters["Q matrix"]["average Ts/Tv"] = \
line_floats[0]
Q_mat_found = True
elif Q_mat_found and line_floats:
parameters["Q matrix"]["matrix"].append(line_floats)
if len(parameters["Q matrix"]["matrix"]) == 4:
Q_mat_found = False
# Find alpha (gamma shape parameter for variable rates)
# Example match: "alpha (gamma, K=5) = 192.47918"
elif "alpha" in line and line_floats:
parameters["alpha"] = line_floats[0]
# Find rho for auto-discrete-gamma model
elif "rho" in line and line_floats:
parameters["rho"] = line_floats[0]
elif "transition probabilities" in line:
parameters["transition probs."] = []
trans_probs_found = True
elif trans_probs_found and line_floats:
parameters["transition probs."].append(line_floats)
if len(parameters["transition probs."]) == len(parameters["rates"]):
trans_probs_found = False
return parameters
def parse_freqs(lines, parameters):
"""Parse the basepair frequencies.
"""
root_re = re.compile("Note: node (\d+) is root.")
branch_freqs_found = False
base_freqs_found = False
for line in lines:
# Find all floating point numbers in this line
line_floats_res = line_floats_re.findall(line)
line_floats = [float(val) for val in line_floats_res]
# Find base frequencies from baseml 4.3
# Example match:
# "Base frequencies: 0.20090 0.16306 0.37027 0.26577"
if "Base frequencies" in line and line_floats:
base_frequencies = {}
base_frequencies["T"] = line_floats[0]
base_frequencies["C"] = line_floats[1]
base_frequencies["A"] = line_floats[2]
base_frequencies["G"] = line_floats[3]
parameters["base frequencies"] = base_frequencies
# Find base frequencies from baseml 4.1:
# Example match:
# "base frequency parameters
# " 0.20317 0.16768 0.36813 0.26102"
elif "base frequency parameters" in line:
base_freqs_found = True
# baseml 4.4 returns to having the base frequencies on the next line
# but the heading changed
elif "Base frequencies" in line and not line_floats:
base_freqs_found = True
elif base_freqs_found and line_floats:
base_frequencies = {}
base_frequencies["T"] = line_floats[0]
base_frequencies["C"] = line_floats[1]
base_frequencies["A"] = line_floats[2]
base_frequencies["G"] = line_floats[3]
parameters["base frequencies"] = base_frequencies
base_freqs_found = False
# Find frequencies
# Example match:
# "freq: 0.90121 0.96051 0.99831 1.03711 1.10287"
elif "freq: " in line and line_floats:
parameters["rate frequencies"] = line_floats
# Find branch-specific frequency parameters
# Example match (note: I think it's possible to have 4 more
# values per line, enclosed in brackets, so I'll account for
# this):
# (frequency parameters for branches) [frequencies at nodes] (see Yang & Roberts 1995 fig 1)
#
# Node #1 ( 0.25824 0.24176 0.25824 0.24176 )
# Node #2 ( 0.00000 0.50000 0.00000 0.50000 )
elif "(frequency parameters for branches)" in line:
parameters["nodes"] = {}
branch_freqs_found = True
elif branch_freqs_found:
if line_floats:
node_res = re.match("Node \#(\d+)", line)
node_num = int(node_res.group(1))
node = {"root": False}
node["frequency parameters"] = line_floats[:4]
if len(line_floats) > 4:
node["base frequencies"] = {"T": line_floats[4],
"C": line_floats[5],
"A": line_floats[6],
"G": line_floats[7]}
parameters["nodes"][node_num] = node
else:
root_res = root_re.match(line)
if root_res is not None:
root_node = int(root_res.group(1))
parameters["nodes"][root_node]["root"] =\
True
branch_freqs_found = False
return parameters
|