1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
|
# Copyright (C) 2011, 2016 by Brandon Invergo (b.invergo@gmail.com)
# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
import re
line_floats_re = re.compile("-*\d+\.\d+")
try:
float("nan")
_nan_float = float
except ValueError:
# Happens prior to Python 2.6 depending on C library, e.g. breaks on WinXP
def _nan_float(text):
try:
return float(text)
except ValueError:
if text.lower() == "nan":
import struct
return struct.unpack('d', struct.pack('Q', 0xfff8000000000000))[0]
else:
raise
def parse_basics(lines, results):
"""Parse the basic information that should be present in most codeml output files.
"""
# multi_models is used to designate there being results for more than one
# model in the file
multi_models = False
multi_genes = False
version_re = re.compile(".+ \(in paml version (\d+\.\d+[a-z]*).*")
model_re = re.compile("Model:\s+(.+)")
num_genes_re = re.compile("\(([0-9]+) genes: separate data\)")
# In codeml 4.1, the codon substitution model is headed by:
# "Codon frequencies:"
# In codeml 4.3+ it is headed by:
# "Codon frequency model:"
codon_freq_re = re.compile("Codon frequenc[a-z\s]{3,7}:\s+(.+)")
siteclass_re = re.compile("Site-class models:\s*([^\s]*)")
for line in lines:
# Find all floating point numbers in this line
line_floats_res = line_floats_re.findall(line)
line_floats = [_nan_float(val) for val in line_floats_res]
# Get the program version number
version_res = version_re.match(line)
if version_res is not None:
results["version"] = version_res.group(1)
continue
# Find the model description at the beginning of the file.
model_res = model_re.match(line)
if model_res is not None:
results["model"] = model_res.group(1)
# Find out if more than one genes are analyzed
num_genes_res = num_genes_re.search(line)
if num_genes_res is not None:
results["genes"] = []
num_genes = int(num_genes_res.group(1))
for n in range(num_genes):
results["genes"].append({})
multi_genes = True
continue
# Get the codon substitution model
codon_freq_res = codon_freq_re.match(line)
if codon_freq_res is not None:
results["codon model"] = codon_freq_res.group(1)
continue
# Find the site-class model name at the beginning of the file.
# This exists only if a NSsites class other than 0 is used.
# If there's no site class model listed, then there are multiple
# models in the results file
# Example match: "Site-class models: PositiveSelection"
siteclass_res = siteclass_re.match(line)
if siteclass_res is not None:
siteclass_model = siteclass_res.group(1)
if siteclass_model != "":
results["site-class model"] = siteclass_model
multi_models = False
else:
multi_models = True
# Get the maximum log-likelihood
if "ln Lmax" in line and line_floats:
results["lnL max"] = line_floats[0]
return (results, multi_models, multi_genes)
def parse_nssites(lines, results, multi_models, multi_genes):
"""Determine which NSsites models are present and parse them.
"""
ns_sites = {}
model_re = re.compile("Model (\d+):\s+(.+)")
gene_re = re.compile("Gene\s+([0-9]+)\s+.+")
siteclass_model = results.get("site-class model")
if not multi_models:
# If there's only one model in the results, find out
# which one it is and then parse it.
if siteclass_model is None:
siteclass_model = "one-ratio"
current_model = {"one-ratio": 0,
"NearlyNeutral": 1,
"PositiveSelection": 2,
"discrete": 3,
"beta": 7,
"beta&w>1": 8,
"M2a_rel": 22}[siteclass_model]
if multi_genes:
genes = results["genes"]
current_gene = None
gene_start = None
for line_num, line in enumerate(lines):
gene_res = gene_re.match(line)
if gene_res:
if current_gene is not None:
parse_model(lines[gene_start:line_num], model_results)
genes[current_gene - 1] = model_results
gene_start = line_num
current_gene = int(gene_res.group(1))
model_results = {"description": siteclass_model}
if len(genes[current_gene - 1]) == 0:
model_results = parse_model(lines[gene_start:], model_results)
genes[current_gene - 1] = model_results
else:
model_results = {"description": siteclass_model}
model_results = parse_model(lines, model_results)
ns_sites[current_model] = model_results
else:
# If there are multiple models in the results, scan through
# the file and send each model's text to be parsed individually.
current_model = None
model_start = None
for line_num, line in enumerate(lines):
# Find model names. If this is found on a line,
# all of the following lines until the next time this matches
# contain results for Model X.
# Example match: "Model 1: NearlyNeutral (2 categories)"
model_res = model_re.match(line)
if model_res:
if current_model is not None:
# We've already been tracking a model, so it's time
# to send those lines off for parsing before beginning
# a new one.
parse_model(lines[model_start:line_num], model_results)
ns_sites[current_model] = model_results
model_start = line_num
current_model = int(model_res.group(1))
model_results = {"description": model_res.group(2)}
if ns_sites.get(current_model) is None:
# When we reach the end of the file, we'll still have one more
# model to parse.
model_results = parse_model(lines[model_start:], model_results)
ns_sites[current_model] = model_results
# Only add the ns_sites dict to the results if we really have results.
# Model M0 is added by default in some cases, so if it exists, make sure
# it's not empty
if len(ns_sites) == 1:
m0 = ns_sites.get(0)
if not m0 or len(m0) > 1:
results["NSsites"] = ns_sites
elif len(ns_sites) > 1:
results["NSsites"] = ns_sites
return results
def parse_model(lines, results):
"""Parse an individual NSsites model's results.
"""
parameters = {}
SEs_flag = False
dS_tree_flag = False
dN_tree_flag = False
w_tree_flag = False
num_params = None
tree_re = re.compile("^\([\w #:',.()]*\);\s*$")
branch_re = re.compile("\s+(\d+\.\.\d+)[\s+\d+\.\d+]+")
model_params_re = re.compile("(?<!\S)([a-z]\d?)\s*=\s+(\d+\.\d+)")
for line in lines:
# Find all floating point numbers in this line
line_floats_res = line_floats_re.findall(line)
line_floats = [_nan_float(val) for val in line_floats_res]
# Check if branch-specific results are in the line
branch_res = branch_re.match(line)
# Check if additional model parameters are in the line
model_params = model_params_re.findall(line)
# Find lnL values.
# Example match (lnL = -2021.348300):
# "lnL(ntime: 19 np: 22): -2021.348300 +0.000000"
if "lnL(ntime:" in line and line_floats:
results["lnL"] = line_floats[0]
np_res = re.match("lnL\(ntime:\s+\d+\s+np:\s+(\d+)\)", line)
if np_res is not None:
num_params = int(np_res.group(1))
# Get parameter list. This can be useful for specifying starting
# parameters in another run by copying the list of parameters
# to a file called in.codeml. Since the parameters must be in
# a fixed order and format, copying and pasting to the file is
# best. For this reason, they are grabbed here just as a long
# string and not as individual numbers.
elif len(line_floats) == num_params and not SEs_flag:
parameters["parameter list"] = line.strip()
# Find SEs. The same format as parameters above is maintained
# since there is a correspondence between the SE format and
# the parameter format.
# Example match:
# "SEs for parameters:
# -1.00000 -1.00000 -1.00000 801727.63247 730462.67590 -1.00000
elif "SEs for parameters:" in line:
SEs_flag = True
elif SEs_flag and len(line_floats) == num_params:
parameters["SEs"] = line.strip()
SEs_flag = False
# Find tree lengths.
# Example match: "tree length = 1.71931"
elif "tree length =" in line and line_floats:
results["tree length"] = line_floats[0]
# Find the estimated trees only taking the tree if it has
# lengths or rate estimates on the branches
elif tree_re.match(line) is not None:
if ":" in line or "#" in line:
if dS_tree_flag:
results["dS tree"] = line.strip()
dS_tree_flag = False
elif dN_tree_flag:
results["dN tree"] = line.strip()
dN_tree_flag = False
elif w_tree_flag:
results["omega tree"] = line.strip()
w_tree_flag = False
else:
results["tree"] = line.strip()
elif "dS tree:" in line:
dS_tree_flag = True
elif "dN tree:" in line:
dN_tree_flag = True
elif "w ratios as labels for TreeView:" in line:
w_tree_flag = True
# Find rates for multiple genes
# Example match: "rates for 2 genes: 1 2.75551"
elif "rates for" in line and line_floats:
line_floats.insert(0, 1.0)
parameters["rates"] = line_floats
# Find kappa values.
# Example match: "kappa (ts/tv) = 2.77541"
elif "kappa (ts/tv)" in line and line_floats:
parameters["kappa"] = line_floats[0]
# Find omega values.
# Example match: "omega (dN/dS) = 0.25122"
elif "omega (dN/dS)" in line and line_floats:
parameters["omega"] = line_floats[0]
elif "w (dN/dS)" in line and line_floats:
parameters["omega"] = line_floats
# Find omega and kappa values for multi-gene files
# Example match: "gene # 1: kappa = 1.72615 omega = 0.39333"
elif "gene # " in line:
gene_num = int(re.match("gene # (\d+)", line).group(1))
if parameters.get("genes") is None:
parameters["genes"] = {}
parameters["genes"][gene_num] = {"kappa": line_floats[0],
"omega": line_floats[1]}
# Find dN values.
# Example match: "tree length for dN: 0.2990"
elif "tree length for dN" in line and line_floats:
parameters["dN"] = line_floats[0]
# Find dS values
# Example match: "tree length for dS: 1.1901"
elif "tree length for dS" in line and line_floats:
parameters["dS"] = line_floats[0]
# Find site class distributions.
# Example match 1 (normal model, 2 site classes):
# "p: 0.77615 0.22385"
# Example match 2 (branch site A model, 4 site classes):
# "proportion 0.00000 0.00000 0.73921 0.26079"
elif line[0:2] == "p:" or line[0:10] == "proportion":
site_classes = parse_siteclass_proportions(line_floats)
parameters["site classes"] = site_classes
# Find the omega value corresponding to each site class
# Example match (2 site classes): "w: 0.10224 1.00000"
elif line[0:2] == "w:":
site_classes = parameters.get("site classes")
site_classes = parse_siteclass_omegas(line, site_classes)
parameters["site classes"] = site_classes
# Find the omega values corresponding to a branch type from
# the clade model C for each site class
# Example match:
# "branch type 0: 0.31022 1.00000 0.00000"
elif "branch type " in line:
branch_type = re.match("branch type (\d)", line)
if branch_type:
site_classes = parameters.get("site classes")
branch_type_no = int(branch_type.group(1))
site_classes = parse_clademodelc(branch_type_no, line_floats,
site_classes)
parameters["site classes"] = site_classes
# Find the omega values of the foreground branch for each site
# class in the branch site A model
# Example match:
# "foreground w 0.07992 1.00000 134.54218 134.54218"
elif line[0:12] == "foreground w":
site_classes = parameters.get("site classes")
site_classes = parse_branch_site_a(True, line_floats, site_classes)
parameters["site classes"] = site_classes
# Find the omega values of the background for each site
# class in the branch site A model
# Example match:
# "background w 0.07992 1.00000 0.07992 1.00000"
elif line[0:12] == "background w":
site_classes = parameters.get("site classes")
site_classes = parse_branch_site_a(False, line_floats, site_classes)
parameters["site classes"] = site_classes
# Find dN & dS for each branch, which is organized in a table
# The possibility of NaNs forces me to not use the line_floats
# method.
# Example row (some spaces removed to make it smaller...).
# " 6..7 0.000 167.7 54.3 0.0000 0.0000 0.0000 0.0 0.0"
elif branch_res is not None and line_floats:
branch = branch_res.group(1)
if parameters.get("branches") is None:
parameters["branches"] = {}
# Hack for Jython http://bugs.jython.org/issue1762 float("-nan")
line = line.replace(" -nan", " nan")
params = line.strip().split()[1:]
parameters["branches"][branch] = {
"t": _nan_float(params[0].strip()),
"N": _nan_float(params[1].strip()),
"S": _nan_float(params[2].strip()),
"omega": _nan_float(params[3].strip()),
"dN": _nan_float(params[4].strip()),
"dS": _nan_float(params[5].strip()),
"N*dN": _nan_float(params[6].strip()),
"S*dS": _nan_float(params[7].strip())}
# Find model parameters, which can be spread across multiple
# lines.
# Example matches:
# " p0= 0.99043 p= 0.36657 q= 1.04445
# " (p1= 0.00957) w= 3.25530"
elif model_params:
float_model_params = []
for param in model_params:
float_model_params.append((param[0], _nan_float(param[1])))
parameters.update(dict(float_model_params))
if parameters:
results["parameters"] = parameters
return results
def parse_siteclass_proportions(line_floats):
"""For models which have multiple site classes, find the proportion of the
alignment assigned to each class.
"""
site_classes = {}
if line_floats:
for n in range(len(line_floats)):
site_classes[n] = {"proportion": line_floats[n]}
return site_classes
def parse_siteclass_omegas(line, site_classes):
"""For models which have multiple site classes, find the omega estimated
for each class.
"""
# The omega results are tabular with strictly 9 characters per column
# (1 to 3 digits before the decimal point and 5 after). This causes
# numbers to sometimes run into each other, so we must use a different
# regular expression to account for this. i.e.:
# w: 0.00012 1.00000109.87121
line_floats = re.findall("\d{1,3}\.\d{5}", line)
if not site_classes or len(line_floats) == 0:
return
for n in range(len(line_floats)):
site_classes[n]["omega"] = line_floats[n]
return site_classes
def parse_clademodelc(branch_type_no, line_floats, site_classes):
"""Parse results specific to the clade model C.
"""
if not site_classes or len(line_floats) == 0:
return
for n in range(len(line_floats)):
if site_classes[n].get("branch types") is None:
site_classes[n]["branch types"] = {}
site_classes[n]["branch types"][branch_type_no] = line_floats[n]
return site_classes
def parse_branch_site_a(foreground, line_floats, site_classes):
"""Parse results specific to the branch site A model.
"""
if not site_classes or len(line_floats) == 0:
return
for n in range(len(line_floats)):
if site_classes[n].get("branch types") is None:
site_classes[n]["branch types"] = {}
if foreground:
site_classes[n]["branch types"]["foreground"] = line_floats[n]
else:
site_classes[n]["branch types"]["background"] = line_floats[n]
return site_classes
def parse_pairwise(lines, results):
"""Parse results from pairwise comparisons.
"""
# Find pairwise comparisons
# Example:
# 2 (Pan_troglo) ... 1 (Homo_sapie)
# lnL = -291.465693
# 0.01262 999.00000 0.00100
#
# t= 0.0126 S= 81.4 N= 140.6 dN/dS= 0.0010 dN= 0.0000 dS= 0.0115
pair_re = re.compile("\d+ \((.+)\) ... \d+ \((.+)\)")
pairwise = {}
for line in lines:
# Find all floating point numbers in this line
line_floats_res = line_floats_re.findall(line)
line_floats = [_nan_float(val) for val in line_floats_res]
pair_res = pair_re.match(line)
if pair_res:
seq1 = pair_res.group(1)
seq2 = pair_res.group(2)
if pairwise.get(seq1) is None:
pairwise[seq1] = {}
if pairwise.get(seq2) is None:
pairwise[seq2] = {}
if len(line_floats) == 1:
pairwise[seq1][seq2] = {"lnL": line_floats[0]}
pairwise[seq2][seq1] = pairwise[seq1][seq2]
elif len(line_floats) == 6:
pairwise[seq1][seq2] = {"t": line_floats[0],
"S": line_floats[1],
"N": line_floats[2],
"omega": line_floats[3],
"dN": line_floats[4],
"dS": line_floats[5]}
pairwise[seq2][seq1] = pairwise[seq1][seq2]
if pairwise:
results["pairwise"] = pairwise
return results
def parse_distances(lines, results):
"""Parse amino acid sequence distance results.
"""
distances = {}
sequences = []
raw_aa_distances_flag = False
ml_aa_distances_flag = False
matrix_row_re = re.compile("(.+)\s{5,15}")
for line in lines:
# Find all floating point numbers in this line
line_floats_res = line_floats_re.findall(line)
line_floats = [_nan_float(val) for val in line_floats_res]
if "AA distances" in line:
raw_aa_distances_flag = True
# In current versions, the raw distances always come
# first but I don't trust this to always be true
ml_aa_distances_flag = False
elif "ML distances of aa seqs." in line:
ml_aa_distances_flag = True
raw_aa_distances_flag = False
# Parse AA distances (raw or ML), in a lower diagonal matrix
matrix_row_res = matrix_row_re.match(line)
if matrix_row_res and (raw_aa_distances_flag or
ml_aa_distances_flag):
seq_name = matrix_row_res.group(1).strip()
if seq_name not in sequences:
sequences.append(seq_name)
if raw_aa_distances_flag:
if distances.get("raw") is None:
distances["raw"] = {}
distances["raw"][seq_name] = {}
for i in range(0, len(line_floats)):
distances["raw"][seq_name][sequences[i]] = line_floats[i]
distances["raw"][sequences[i]][seq_name] = line_floats[i]
else:
if distances.get("ml") is None:
distances["ml"] = {}
distances["ml"][seq_name] = {}
for i in range(0, len(line_floats)):
distances["ml"][seq_name][sequences[i]] = line_floats[i]
distances["ml"][sequences[i]][seq_name] = line_floats[i]
if distances:
results["distances"] = distances
return results
|