1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
|
# Copyright (C) 2013 by Yanbo Ye (yeyanbo289@gmail.com)
# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
"""Classes and methods for tree construction"""
import itertools
import copy
from Bio.Phylo import BaseTree
from Bio.Align import MultipleSeqAlignment
from Bio.SubsMat import MatrixInfo
from Bio import _py3k
def _is_numeric(x):
return _py3k._is_int_or_long(x) or isinstance(x, (float, complex))
class _Matrix(object):
"""Base class for distance matrix or scoring matrix
Accepts a list of names and a lower triangular matrix.::
matrix = [[0],
[1, 0],
[2, 3, 0],
[4, 5, 6, 0]]
represents the symmetric matrix of
[0,1,2,4]
[1,0,3,5]
[2,3,0,6]
[4,5,6,0]
:Parameters:
names : list
names of elements, used for indexing
matrix : list
nested list of numerical lists in lower triangular format
Example
-------
>>> from Bio.Phylo.TreeConstruction import _Matrix
>>> names = ['Alpha', 'Beta', 'Gamma', 'Delta']
>>> matrix = [[0], [1, 0], [2, 3, 0], [4, 5, 6, 0]]
>>> m = _Matrix(names, matrix)
>>> m
_Matrix(names=['Alpha', 'Beta', 'Gamma', 'Delta'], matrix=[[0], [1, 0], [2, 3, 0], [4, 5, 6, 0]])
You can use two indices to get or assign an element in the matrix.
>>> m[1,2]
3
>>> m['Beta','Gamma']
3
>>> m['Beta','Gamma'] = 4
>>> m['Beta','Gamma']
4
Further more, you can use one index to get or assign a list of elements related to that index.
>>> m[0]
[0, 1, 2, 4]
>>> m['Alpha']
[0, 1, 2, 4]
>>> m['Alpha'] = [0, 7, 8, 9]
>>> m[0]
[0, 7, 8, 9]
>>> m[0,1]
7
Also you can delete or insert a column&row of elemets by index.
>>> m
_Matrix(names=['Alpha', 'Beta', 'Gamma', 'Delta'], matrix=[[0], [7, 0], [8, 4, 0], [9, 5, 6, 0]])
>>> del m['Alpha']
>>> m
_Matrix(names=['Beta', 'Gamma', 'Delta'], matrix=[[0], [4, 0], [5, 6, 0]])
>>> m.insert('Alpha', [0, 7, 8, 9] , 0)
>>> m
_Matrix(names=['Alpha', 'Beta', 'Gamma', 'Delta'], matrix=[[0], [7, 0], [8, 4, 0], [9, 5, 6, 0]])
"""
def __init__(self, names, matrix=None):
"""Initialize matrix by a list of names and a list of
lower triangular matrix data"""
# check names
if isinstance(names, list) and all(isinstance(s, str) for s in names):
if len(set(names)) == len(names):
self.names = names
else:
raise ValueError("Duplicate names found")
else:
raise TypeError("'names' should be a list of strings")
# check matrix
if matrix is None:
# create a new one with 0 if matrix is not assigned
matrix = [[0] * i for i in range(1, len(self) + 1)]
self.matrix = matrix
else:
# check if all elements are numbers
if (isinstance(matrix, list) and
all(isinstance(l, list) for l in matrix) and
all(_is_numeric(n) for n in [item for sublist in matrix
for item in sublist])):
# check if the same length with names
if len(matrix) == len(names):
# check if is lower triangle format
if [len(m) for m in matrix] == list(range(1, len(self) + 1)):
self.matrix = matrix
else:
raise ValueError(
"'matrix' should be in lower triangle format")
else:
raise ValueError(
"'names' and 'matrix' should be the same size")
else:
raise TypeError("'matrix' should be a list of numerical lists")
def __getitem__(self, item):
"""Access value(s) by the index(s) or name(s).
For a _Matrix object 'dm'::
dm[i] get a value list from the given 'i' to others;
dm[i, j] get the value between 'i' and 'j';
dm['name'] map name to index first
dm['name1', 'name2'] map name to index first
"""
# Handle single indexing
if isinstance(item, (int, str)):
index = None
if isinstance(item, int):
index = item
elif isinstance(item, str):
if item in self.names:
index = self.names.index(item)
else:
raise ValueError("Item not found.")
else:
raise TypeError("Invalid index type.")
# check index
if index > len(self) - 1:
raise IndexError("Index out of range.")
return [self.matrix[index][i] for i in range(0, index)] + [self.matrix[i][index] for i in range(index, len(self))]
# Handle double indexing
elif len(item) == 2:
row_index = None
col_index = None
if all(isinstance(i, int) for i in item):
row_index, col_index = item
elif all(isinstance(i, str) for i in item):
row_name, col_name = item
if row_name in self.names and col_name in self.names:
row_index = self.names.index(row_name)
col_index = self.names.index(col_name)
else:
raise ValueError("Item not found.")
else:
raise TypeError("Invalid index type.")
# check index
if row_index > len(self) - 1 or col_index > len(self) - 1:
raise IndexError("Index out of range.")
if row_index > col_index:
return self.matrix[row_index][col_index]
else:
return self.matrix[col_index][row_index]
else:
raise TypeError("Invalid index type.")
def __setitem__(self, item, value):
"""Set value by the index(s) or name(s).
Similar to __getitem__::
dm[1] = [1, 0, 3, 4] set values from '1' to others;
dm[i, j] = 2 set the value from 'i' to 'j'
"""
# Handle single indexing
if isinstance(item, (int, str)):
index = None
if isinstance(item, int):
index = item
elif isinstance(item, str):
if item in self.names:
index = self.names.index(item)
else:
raise ValueError("Item not found.")
else:
raise TypeError("Invalid index type.")
# check index
if index > len(self) - 1:
raise IndexError("Index out of range.")
# check and assign value
if isinstance(value, list) and all(_is_numeric(n) for n in value):
if len(value) == len(self):
for i in range(0, index):
self.matrix[index][i] = value[i]
for i in range(index, len(self)):
self.matrix[i][index] = value[i]
else:
raise ValueError("Value not the same size.")
else:
raise TypeError("Invalid value type.")
# Handle double indexing
elif len(item) == 2:
row_index = None
col_index = None
if all(isinstance(i, int) for i in item):
row_index, col_index = item
elif all(isinstance(i, str) for i in item):
row_name, col_name = item
if row_name in self.names and col_name in self.names:
row_index = self.names.index(row_name)
col_index = self.names.index(col_name)
else:
raise ValueError("Item not found.")
else:
raise TypeError("Invalid index type.")
# check index
if row_index > len(self) - 1 or col_index > len(self) - 1:
raise IndexError("Index out of range.")
# check and assign value
if _is_numeric(value):
if row_index > col_index:
self.matrix[row_index][col_index] = value
else:
self.matrix[col_index][row_index] = value
else:
raise TypeError("Invalid value type.")
else:
raise TypeError("Invalid index type.")
def __delitem__(self, item):
"""Delete related distances by the index or name"""
index = None
if isinstance(item, int):
index = item
elif isinstance(item, str):
index = self.names.index(item)
else:
raise TypeError("Invalid index type.")
# remove distances related to index
for i in range(index + 1, len(self)):
del self.matrix[i][index]
del self.matrix[index]
# remove name
del self.names[index]
def insert(self, name, value, index=None):
"""Insert distances given the name and value.
:Parameters:
name : str
name of a row/col to be inserted
value : list
a row/col of values to be inserted
"""
if isinstance(name, str):
# insert at the given index or at the end
if index is None:
index = len(self)
if not isinstance(index, int):
raise TypeError("Invalid index type.")
# insert name
self.names.insert(index, name)
# insert elements of 0, to be assigned
self.matrix.insert(index, [0] * index)
for i in range(index, len(self)):
self.matrix[i].insert(index, 0)
# assign value
self[index] = value
else:
raise TypeError("Invalid name type.")
def __len__(self):
"""Matrix length"""
return len(self.names)
def __repr__(self):
return self.__class__.__name__ \
+ "(names=%s, matrix=%s)" \
% tuple(map(repr, (self.names, self.matrix)))
def __str__(self):
"""Get a lower triangular matrix string"""
matrix_string = '\n'.join(
[self.names[i] + "\t" + "\t".join([str(n) for n in self.matrix[i]])
for i in range(0, len(self))])
matrix_string = matrix_string + "\n\t" + "\t".join(self.names)
return matrix_string
class _DistanceMatrix(_Matrix):
"""Distance matrix class that can be used for distance based tree algorithms.
All diagonal elements will be zero no matter what the users provide.
"""
def __init__(self, names, matrix=None):
_Matrix.__init__(self, names, matrix)
self._set_zero_diagonal()
def __setitem__(self, item, value):
_Matrix.__setitem__(self, item, value)
self._set_zero_diagonal()
def _set_zero_diagonal(self):
"""set all diagonal elements to zero"""
for i in range(0, len(self)):
self.matrix[i][i] = 0
class DistanceCalculator(object):
"""Class to calculate the distance matrix from a DNA or Protein
Multiple Sequence Alignment(MSA) and the given name of the
substitution model.
Currently only scoring matrices are used.
:Parameters:
model : str
Name of the model matrix to be used to calculate distance.
The attribute `dna_matrices` contains the available model
names for DNA sequences and `protein_matrices` for protein
sequences.
Example
-------
>>> from Bio.Phylo.TreeConstruction import DistanceCalculator
>>> from Bio import AlignIO
>>> aln = AlignIO.read(open('Tests/TreeConstruction/msa.phy'), 'phylip')
>>> print aln
SingleLetterAlphabet() alignment with 5 rows and 13 columns
AACGTGGCCACAT Alpha
AAGGTCGCCACAC Beta
GAGATTTCCGCCT Delta
GAGATCTCCGCCC Epsilon
CAGTTCGCCACAA Gamma
DNA calculator with 'identity' model::
>>> calculator = DistanceCalculator('identity')
>>> dm = calculator.get_distance(aln)
>>> print dm
Alpha 0
Beta 0.230769230769 0
Gamma 0.384615384615 0.230769230769 0
Delta 0.538461538462 0.538461538462 0.538461538462 0
Epsilon 0.615384615385 0.384615384615 0.461538461538 0.153846153846 0
Alpha Beta Gamma Delta Epsilon
Protein calculator with 'blosum62' model::
>>> calculator = DistanceCalculator('blosum62')
>>> dm = calculator.get_distance(aln)
>>> print dm
Alpha 0
Beta 0.369047619048 0
Gamma 0.493975903614 0.25 0
Delta 0.585365853659 0.547619047619 0.566265060241 0
Epsilon 0.7 0.355555555556 0.488888888889 0.222222222222 0
Alpha Beta Gamma Delta Epsilon
"""
dna_alphabet = ['A', 'T', 'C', 'G']
# BLAST nucleic acid scoring matrix
blastn = [[5],
[-4, 5],
[-4, -4, 5],
[-4, -4, -4, 5]]
# transition/transversion scoring matrix
trans = [[6],
[-5, 6],
[-5, -1, 6],
[-1, -5, -5, 6]]
protein_alphabet = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L',
'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'X', 'Y',
'Z']
# matrices available
dna_matrices = {'blastn': blastn, 'trans': trans}
protein_models = MatrixInfo.available_matrices
protein_matrices = dict((name, getattr(MatrixInfo, name))
for name in protein_models)
dna_models = list(dna_matrices.keys())
models = ['identity'] + dna_models + protein_models
def __init__(self, model='identity'):
"""Initialize with a distance model"""
if model == 'identity':
self.scoring_matrix = None
elif model in self.dna_models:
self.scoring_matrix = _Matrix(self.dna_alphabet,
self.dna_matrices[model])
elif model in self.protein_models:
self.scoring_matrix = self._build_protein_matrix(
self.protein_matrices[model])
else:
raise ValueError("Model not supported. Available models: " +
", ".join(self.models))
def _pairwise(self, seq1, seq2):
"""Calculate pairwise distance from two sequences.
Returns a value between 0 (identical sequences) and 1 (completely
different, or seq1 is an empty string.)
"""
score = 0
max_score = 0
if self.scoring_matrix:
max_score1 = 0
max_score2 = 0
skip_letters = ['-', '*']
for i in range(0, len(seq1)):
l1 = seq1[i]
l2 = seq2[i]
if l1 in skip_letters or l2 in skip_letters:
continue
if l1 not in self.scoring_matrix.names:
raise ValueError("Bad alphabet '%s' in sequence '%s' at position '%s'"
% (l1, seq1.id, i))
if l2 not in self.scoring_matrix.names:
raise ValueError("Bad alphabet '%s' in sequence '%s' at position '%s'"
% (l2, seq2.id, i))
max_score1 += self.scoring_matrix[l1, l1]
max_score2 += self.scoring_matrix[l2, l2]
score += self.scoring_matrix[l1, l2]
# Take the higher score if the matrix is asymmetrical
max_score = max(max_score1, max_score2)
else:
# Score by character identity, not skipping any special letters
for i in range(0, len(seq1)):
l1 = seq1[i]
l2 = seq2[i]
if l1 == l2:
score += 1
max_score = len(seq1)
if max_score == 0:
return 1 # max possible scaled distance
return 1 - (score * 1.0 / max_score)
def get_distance(self, msa):
"""Return a _DistanceMatrix for MSA object
:Parameters:
msa : MultipleSeqAlignment
DNA or Protein multiple sequence alignment.
"""
if not isinstance(msa, MultipleSeqAlignment):
raise TypeError("Must provide a MultipleSeqAlignment object.")
names = [s.id for s in msa]
dm = _DistanceMatrix(names)
for seq1, seq2 in itertools.combinations(msa, 2):
dm[seq1.id, seq2.id] = self._pairwise(seq1, seq2)
return dm
def _build_protein_matrix(self, subsmat):
"""Convert matrix from SubsMat format to _Matrix object"""
protein_matrix = _Matrix(self.protein_alphabet)
for k, v in subsmat.items():
aa1, aa2 = k
protein_matrix[aa1, aa2] = v
return protein_matrix
class TreeConstructor(object):
"""Base class for all tree constructor."""
def build_tree(self, msa):
"""Caller to built the tree from a MultipleSeqAlignment object.
This should be implemented in subclass"""
raise NotImplementedError("Method not implemented!")
class DistanceTreeConstructor(TreeConstructor):
"""Distance based tree constructor.
:Parameters:
method : str
Distance tree construction method, 'nj'(default) or 'upgma'.
distance_calculator : DistanceCalculator
The distance matrix calculator for multiple sequence alignment.
It must be provided if `build_tree` will be called.
Example
--------
>>> from TreeConstruction import DistanceTreeConstructor
>>> constructor = DistanceTreeConstructor()
UPGMA Tree:
>>> upgmatree = constructor.upgma(dm)
>>> print upgmatree
Tree(rooted=True)
Clade(name='Inner4')
Clade(branch_length=0.171955155115, name='Inner1')
Clade(branch_length=0.111111111111, name='Epsilon')
Clade(branch_length=0.111111111111, name='Delta')
Clade(branch_length=0.0673103855608, name='Inner3')
Clade(branch_length=0.0907558806655, name='Inner2')
Clade(branch_length=0.125, name='Gamma')
Clade(branch_length=0.125, name='Beta')
Clade(branch_length=0.215755880666, name='Alpha')
NJ Tree:
>>> njtree = constructor.nj(dm)
>>> print njtree
Tree(rooted=False)
Clade(name='Inner3')
Clade(branch_length=0.0142054862889, name='Inner2')
Clade(branch_length=0.239265540676, name='Inner1')
Clade(branch_length=0.0853101915988, name='Epsilon')
Clade(branch_length=0.136912030623, name='Delta')
Clade(branch_length=0.292306275042, name='Alpha')
Clade(branch_length=0.0747705106139, name='Beta')
Clade(branch_length=0.175229489386, name='Gamma')
"""
methods = ['nj', 'upgma']
def __init__(self, distance_calculator=None, method="nj"):
if (distance_calculator is None or
isinstance(distance_calculator, DistanceCalculator)):
self.distance_calculator = distance_calculator
else:
raise TypeError("Must provide a DistanceCalculator object.")
if isinstance(method, str) and method in self.methods:
self.method = method
else:
raise TypeError("Bad method: " + method +
". Available methods: " + ", ".join(self.methods))
def build_tree(self, msa):
if self.distance_calculator:
dm = self.distance_calculator.get_distance(msa)
tree = None
if self.method == 'upgma':
tree = self.upgma(dm)
else:
tree = self.nj(dm)
return tree
else:
raise TypeError("Must provide a DistanceCalculator object.")
def upgma(self, distance_matrix):
"""Construct and return an UPGMA tree.
Constructs and returns an Unweighted Pair Group Method
with Arithmetic mean (UPGMA) tree.
:Parameters:
distance_matrix : _DistanceMatrix
The distance matrix for tree construction.
"""
if not isinstance(distance_matrix, _DistanceMatrix):
raise TypeError("Must provide a _DistanceMatrix object.")
# make a copy of the distance matrix to be used
dm = copy.deepcopy(distance_matrix)
# init terminal clades
clades = [BaseTree.Clade(None, name) for name in dm.names]
# init minimum index
min_i = 0
min_j = 0
inner_count = 0
while len(dm) > 1:
min_dist = dm[1, 0]
# find minimum index
for i in range(1, len(dm)):
for j in range(0, i):
if min_dist >= dm[i, j]:
min_dist = dm[i, j]
min_i = i
min_j = j
# create clade
clade1 = clades[min_i]
clade2 = clades[min_j]
inner_count += 1
inner_clade = BaseTree.Clade(None, "Inner" + str(inner_count))
inner_clade.clades.append(clade1)
inner_clade.clades.append(clade2)
# assign branch length
if clade1.is_terminal():
clade1.branch_length = min_dist * 1.0 / 2
else:
clade1.branch_length = min_dist * \
1.0 / 2 - self._height_of(clade1)
if clade2.is_terminal():
clade2.branch_length = min_dist * 1.0 / 2
else:
clade2.branch_length = min_dist * \
1.0 / 2 - self._height_of(clade2)
# update node list
clades[min_j] = inner_clade
del clades[min_i]
# rebuild distance matrix,
# set the distances of new node at the index of min_j
for k in range(0, len(dm)):
if k != min_i and k != min_j:
dm[min_j, k] = (dm[min_i, k] + dm[min_j, k]) * 1.0 / 2
dm.names[min_j] = "Inner" + str(inner_count)
del dm[min_i]
inner_clade.branch_length = 0
return BaseTree.Tree(inner_clade)
def nj(self, distance_matrix):
"""Construct and return an Neighbor Joining tree.
:Parameters:
distance_matrix : _DistanceMatrix
The distance matrix for tree construction.
"""
if not isinstance(distance_matrix, _DistanceMatrix):
raise TypeError("Must provide a _DistanceMatrix object.")
# make a copy of the distance matrix to be used
dm = copy.deepcopy(distance_matrix)
# init terminal clades
clades = [BaseTree.Clade(None, name) for name in dm.names]
# init node distance
node_dist = [0] * len(dm)
# init minimum index
min_i = 0
min_j = 0
inner_count = 0
while len(dm) > 2:
# calculate nodeDist
for i in range(0, len(dm)):
node_dist[i] = 0
for j in range(0, len(dm)):
node_dist[i] += dm[i, j]
node_dist[i] = node_dist[i] / (len(dm) - 2)
# find minimum distance pair
min_dist = dm[1, 0] - node_dist[1] - node_dist[0]
min_i = 0
min_j = 1
for i in range(1, len(dm)):
for j in range(0, i):
temp = dm[i, j] - node_dist[i] - node_dist[j]
if min_dist > temp:
min_dist = temp
min_i = i
min_j = j
# create clade
clade1 = clades[min_i]
clade2 = clades[min_j]
inner_count += 1
inner_clade = BaseTree.Clade(None, "Inner" + str(inner_count))
inner_clade.clades.append(clade1)
inner_clade.clades.append(clade2)
# assign branch length
clade1.branch_length = (dm[min_i, min_j] + node_dist[min_i] -
node_dist[min_j]) / 2.0
clade2.branch_length = dm[min_i, min_j] - clade1.branch_length
# update node list
clades[min_j] = inner_clade
del clades[min_i]
# rebuild distance matrix,
# set the distances of new node at the index of min_j
for k in range(0, len(dm)):
if k != min_i and k != min_j:
dm[min_j, k] = (dm[min_i, k] + dm[min_j, k] -
dm[min_i, min_j]) / 2.0
dm.names[min_j] = "Inner" + str(inner_count)
del dm[min_i]
# set the last clade as one of the child of the inner_clade
root = None
if clades[0] == inner_clade:
clades[0].branch_length = 0
clades[1].branch_length = dm[1, 0]
clades[0].clades.append(clades[1])
root = clades[0]
else:
clades[0].branch_length = dm[1, 0]
clades[1].branch_length = 0
clades[1].clades.append(clades[0])
root = clades[1]
return BaseTree.Tree(root, rooted=False)
def _height_of(self, clade):
"""calculate clade height -- the longest path to any terminal."""
height = 0
if clade.is_terminal():
height = clade.branch_length
else:
height = height + max([self._height_of(c) for c in clade.clades])
return height
# #################### Tree Scoring and Searching Classes #####################
class Scorer(object):
"""Base class for all tree scoring methods"""
def get_score(self, tree, alignment):
"""Caller to get the score of a tree for the given alignment.
This should be implemented in subclass"""
raise NotImplementedError("Method not implemented!")
class TreeSearcher(object):
"""Base class for all tree searching methods"""
def search(self, starting_tree, alignment):
"""Caller to search the best tree with a starting tree.
This should be implemented in subclass"""
raise NotImplementedError("Method not implemented!")
class NNITreeSearcher(TreeSearcher):
"""Tree searching with Nearest Neighbor Interchanges (NNI) algorithm.
:Parameters:
scorer : ParsimonyScorer
parsimony scorer to calculate the parsimony score of
different trees during NNI algorithm.
"""
def __init__(self, scorer):
if isinstance(scorer, Scorer):
self.scorer = scorer
else:
raise TypeError("Must provide a Scorer object.")
def search(self, starting_tree, alignment):
"""Implement the TreeSearcher.search method.
:Parameters:
starting_tree : Tree
starting tree of NNI method.
alignment : MultipleSeqAlignment
multiple sequence alignment used to calculate parsimony
score of different NNI trees.
"""
return self._nni(starting_tree, alignment)
def _nni(self, starting_tree, alignment):
"""Search for the best parsimony tree using the NNI algorithm."""
best_tree = starting_tree
while True:
best_score = self.scorer.get_score(best_tree, alignment)
temp = best_score
for t in self._get_neighbors(best_tree):
score = self.scorer.get_score(t, alignment)
if score < best_score:
best_score = score
best_tree = t
# stop if no smaller score exist
if best_score >= temp:
break
return best_tree
def _get_neighbors(self, tree):
"""Get all neighbor trees of the given tree.
Currently only for binary rooted trees.
"""
# make child to parent dict
parents = {}
for clade in tree.find_clades():
if clade != tree.root:
node_path = tree.get_path(clade)
# cannot get the parent if the parent is root. Bug?
if len(node_path) == 1:
parents[clade] = tree.root
else:
parents[clade] = node_path[-2]
neighbors = []
root_childs = []
for clade in tree.get_nonterminals(order="level"):
if clade == tree.root:
left = clade.clades[0]
right = clade.clades[1]
root_childs.append(left)
root_childs.append(right)
if not left.is_terminal() and not right.is_terminal():
# make changes around the left_left clade
# left_left = left.clades[0]
left_right = left.clades[1]
right_left = right.clades[0]
right_right = right.clades[1]
# neightbor 1 (left_left + right_right)
del left.clades[1]
del right.clades[1]
left.clades.append(right_right)
right.clades.append(left_right)
temp_tree = copy.deepcopy(tree)
neighbors.append(temp_tree)
# neighbor 2 (left_left + right_left)
del left.clades[1]
del right.clades[0]
left.clades.append(right_left)
right.clades.append(right_right)
temp_tree = copy.deepcopy(tree)
neighbors.append(temp_tree)
# change back (left_left + left_right)
del left.clades[1]
del right.clades[0]
left.clades.append(left_right)
right.clades.insert(0, right_left)
elif clade in root_childs:
# skip root child
continue
else:
# method for other clades
# make changes around the parent clade
left = clade.clades[0]
right = clade.clades[1]
parent = parents[clade]
if clade == parent.clades[0]:
sister = parent.clades[1]
# neighbor 1 (parent + right)
del parent.clades[1]
del clade.clades[1]
parent.clades.append(right)
clade.clades.append(sister)
temp_tree = copy.deepcopy(tree)
neighbors.append(temp_tree)
# neighbor 2 (parent + left)
del parent.clades[1]
del clade.clades[0]
parent.clades.append(left)
clade.clades.append(right)
temp_tree = copy.deepcopy(tree)
neighbors.append(temp_tree)
# change back (parent + sister)
del parent.clades[1]
del clade.clades[0]
parent.clades.append(sister)
clade.clades.insert(0, left)
else:
sister = parent.clades[0]
# neighbor 1 (parent + right)
del parent.clades[0]
del clade.clades[1]
parent.clades.insert(0, right)
clade.clades.append(sister)
temp_tree = copy.deepcopy(tree)
neighbors.append(temp_tree)
# neighbor 2 (parent + left)
del parent.clades[0]
del clade.clades[0]
parent.clades.insert(0, left)
clade.clades.append(right)
temp_tree = copy.deepcopy(tree)
neighbors.append(temp_tree)
# change back (parent + sister)
del parent.clades[0]
del clade.clades[0]
parent.clades.insert(0, sister)
clade.clades.insert(0, left)
return neighbors
# ######################## Parsimony Classes ##########################
class ParsimonyScorer(Scorer):
"""Parsimony scorer with a scoring matrix.
This is a combination of Fitch algorithm and Sankoff algorithm.
See ParsimonyTreeConstructor for usage.
:Parameters:
matrix : _Matrix
scoring matrix used in parsimony score calculation.
"""
def __init__(self, matrix=None):
if not matrix or isinstance(matrix, _Matrix):
self.matrix = matrix
else:
raise TypeError("Must provide a _Matrix object.")
def get_score(self, tree, alignment):
"""Calculate and return the parsimony score given a tree and
the MSA using the Fitch algorithm without the penalty matrix
the Sankoff algorithm with the matrix"""
# make sure the tree is rooted and bifurcating
if not tree.is_bifurcating():
raise ValueError("The tree provided should be bifurcating.")
if not tree.rooted:
tree.root_at_midpoint()
# sort tree terminals and alignment
terms = tree.get_terminals()
terms.sort(key=lambda term: term.name)
alignment.sort()
if not all(t.name == a.id for t, a in zip(terms, alignment)):
raise ValueError(
"Taxon names of the input tree should be the same with the alignment.")
# term_align = dict(zip(terms, alignment))
score = 0
for i in range(len(alignment[0])):
# parsimony score for column_i
score_i = 0
# get column
column_i = alignment[:, i]
# skip non-informative column
if column_i == len(column_i) * column_i[0]:
continue
# start calculating score_i using the tree and column_i
# Fitch algorithm without the penalty matrix
if not self.matrix:
# init by mapping terminal clades and states in column_i
clade_states = dict(zip(terms, [set([c]) for c in column_i]))
for clade in tree.get_nonterminals(order="postorder"):
clade_childs = clade.clades
left_state = clade_states[clade_childs[0]]
right_state = clade_states[clade_childs[1]]
state = left_state & right_state
if not state:
state = left_state | right_state
score_i = score_i + 1
clade_states[clade] = state
# Sankoff algorithm with the penalty matrix
else:
inf = float('inf')
# init score arrays for terminal clades
alphabet = self.matrix.names
length = len(alphabet)
clade_scores = {}
for j in range(len(column_i)):
array = [inf] * length
index = alphabet.index(column_i[j])
array[index] = 0
clade_scores[terms[j]] = array
# bottom up calculation
for clade in tree.get_nonterminals(order="postorder"):
clade_childs = clade.clades
left_score = clade_scores[clade_childs[0]]
right_score = clade_scores[clade_childs[1]]
array = []
for m in range(length):
min_l = inf
min_r = inf
for n in range(length):
sl = self.matrix[
alphabet[m], alphabet[n]] + left_score[n]
sr = self.matrix[
alphabet[m], alphabet[n]] + right_score[n]
if min_l > sl:
min_l = sl
if min_r > sr:
min_r = sr
array.append(min_l + min_r)
clade_scores[clade] = array
# minimum from root score
score_i = min(array)
# TODO: resolve internal states
score = score + score_i
return score
class ParsimonyTreeConstructor(TreeConstructor):
"""Parsimony tree constructor.
:Parameters:
searcher : TreeSearcher
tree searcher to search the best parsimony tree.
starting_tree : Tree
starting tree provided to the searcher.
Example
--------
>>> from Bio import AlignIO
>>> from TreeConstruction import *
>>> aln = AlignIO.read(open('Tests/TreeConstruction/msa.phy'), 'phylip')
>>> print aln
SingleLetterAlphabet() alignment with 5 rows and 13 columns
AACGTGGCCACAT Alpha
AAGGTCGCCACAC Beta
GAGATTTCCGCCT Delta
GAGATCTCCGCCC Epsilon
CAGTTCGCCACAA Gamma
>>> starting_tree = Phylo.read('Tests/TreeConstruction/nj.tre', 'newick')
>>> print tree
Tree(weight=1.0, rooted=False)
Clade(branch_length=0.0, name='Inner3')
Clade(branch_length=0.01421, name='Inner2')
Clade(branch_length=0.23927, name='Inner1')
Clade(branch_length=0.08531, name='Epsilon')
Clade(branch_length=0.13691, name='Delta')
Clade(branch_length=0.29231, name='Alpha')
Clade(branch_length=0.07477, name='Beta')
Clade(branch_length=0.17523, name='Gamma')
>>> from TreeConstruction import *
>>> scorer = ParsimonyScorer()
>>> searcher = NNITreeSearcher(scorer)
>>> constructor = ParsimonyTreeConstructor(searcher, starting_tree)
>>> pars_tree = constructor.build_tree(aln)
>>> print pars_tree
Tree(weight=1.0, rooted=True)
Clade(branch_length=0.0)
Clade(branch_length=0.197335, name='Inner1')
Clade(branch_length=0.13691, name='Delta')
Clade(branch_length=0.08531, name='Epsilon')
Clade(branch_length=0.041935, name='Inner2')
Clade(branch_length=0.01421, name='Inner3')
Clade(branch_length=0.17523, name='Gamma')
Clade(branch_length=0.07477, name='Beta')
Clade(branch_length=0.29231, name='Alpha')
"""
def __init__(self, searcher, starting_tree=None):
self.searcher = searcher
self.starting_tree = starting_tree
def build_tree(self, alignment):
"""Build the tree.
:Parameters:
alignment : MultipleSeqAlignment
multiple sequence alignment to calculate parsimony tree.
"""
# if starting_tree is none,
# create a upgma tree with 'identity' scoring matrix
if self.starting_tree is None:
dtc = DistanceTreeConstructor(DistanceCalculator("identity"),
"upgma")
self.starting_tree = dtc.build_tree(alignment)
return self.searcher.search(self.starting_tree, alignment)
|