1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
|
#!/usr/bin/env python
# Created: Wed May 29 08:07:18 2002
# thomas@cbs.dtu.dk, Cecilia.Alsmark@ebc.uu.se
# Copyright 2001 by Thomas Sicheritz-Ponten and Cecilia Alsmark.
# Revisions copyright 2014 by Markus Piotrowski.
# Revisions copyright 2014-2016 by Peter Cock.
# All rights reserved.
# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
"""Miscellaneous functions for dealing with sequences."""
from __future__ import print_function
import re
from math import pi, sin, cos
from Bio.Seq import Seq, MutableSeq
from Bio import Alphabet
from Bio.Alphabet import IUPAC
from Bio.Data import IUPACData
######################################
# DNA
######################
# {{{
def GC(seq):
"""Calculates G+C content, returns the percentage (float between 0 and 100).
Copes mixed case sequences, and with the ambiguous nucleotide S (G or C)
when counting the G and C content. The percentage is calculated against
the full length, e.g.:
>>> from Bio.SeqUtils import GC
>>> GC("ACTGN")
40.0
Note that this will return zero for an empty sequence.
"""
gc = sum(seq.count(x) for x in ['G', 'C', 'g', 'c', 'S', 's'])
try:
return gc * 100.0 / len(seq)
except ZeroDivisionError:
return 0.0
def GC123(seq):
"""Calculates total G+C content plus first, second and third positions.
Returns a tuple of four floats (percentages between 0 and 100) for the
entire sequence, and the three codon positions. e.g.
>>> from Bio.SeqUtils import GC123
>>> GC123("ACTGTN")
(40.0, 50.0, 50.0, 0.0)
Copes with mixed case sequences, but does NOT deal with ambiguous
nucleotides.
"""
d = {}
for nt in ['A', 'T', 'G', 'C']:
d[nt] = [0, 0, 0]
for i in range(0, len(seq), 3):
codon = seq[i:i + 3]
if len(codon) < 3:
codon += ' '
for pos in range(0, 3):
for nt in ['A', 'T', 'G', 'C']:
if codon[pos] == nt or codon[pos] == nt.lower():
d[nt][pos] += 1
gc = {}
gcall = 0
nall = 0
for i in range(0, 3):
try:
n = d['G'][i] + d['C'][i] + d['T'][i] + d['A'][i]
gc[i] = (d['G'][i] + d['C'][i]) * 100.0 / n
except Exception: # TODO - ValueError?
gc[i] = 0
gcall = gcall + d['G'][i] + d['C'][i]
nall = nall + n
gcall = 100.0 * gcall / nall
return gcall, gc[0], gc[1], gc[2]
def GC_skew(seq, window=100):
"""Calculates GC skew (G-C)/(G+C) for multiple windows along the sequence.
Returns a list of ratios (floats), controlled by the length of the sequence
and the size of the window.
Does NOT look at any ambiguous nucleotides.
"""
# 8/19/03: Iddo: added lowercase
values = []
for i in range(0, len(seq), window):
s = seq[i: i + window]
g = s.count('G') + s.count('g')
c = s.count('C') + s.count('c')
skew = (g - c) / float(g + c)
values.append(skew)
return values
def xGC_skew(seq, window=1000, zoom=100,
r=300, px=100, py=100):
"""Calculates and plots normal and accumulated GC skew (GRAPHICS !!!)."""
try:
import Tkinter as tkinter # Python 2
except ImportError:
import tkinter # Python 3
yscroll = tkinter.Scrollbar(orient=tkinter.VERTICAL)
xscroll = tkinter.Scrollbar(orient=tkinter.HORIZONTAL)
canvas = tkinter.Canvas(yscrollcommand=yscroll.set,
xscrollcommand=xscroll.set, background='white')
win = canvas.winfo_toplevel()
win.geometry('700x700')
yscroll.config(command=canvas.yview)
xscroll.config(command=canvas.xview)
yscroll.pack(side=tkinter.RIGHT, fill=tkinter.Y)
xscroll.pack(side=tkinter.BOTTOM, fill=tkinter.X)
canvas.pack(fill=tkinter.BOTH, side=tkinter.LEFT, expand=1)
canvas.update()
X0, Y0 = r + px, r + py
x1, x2, y1, y2 = X0 - r, X0 + r, Y0 - r, Y0 + r
ty = Y0
canvas.create_text(X0, ty, text='%s...%s (%d nt)' % (seq[:7], seq[-7:], len(seq)))
ty += 20
canvas.create_text(X0, ty, text='GC %3.2f%%' % (GC(seq)))
ty += 20
canvas.create_text(X0, ty, text='GC Skew', fill='blue')
ty += 20
canvas.create_text(X0, ty, text='Accumulated GC Skew', fill='magenta')
ty += 20
canvas.create_oval(x1, y1, x2, y2)
acc = 0
start = 0
for gc in GC_skew(seq, window):
r1 = r
acc += gc
# GC skew
alpha = pi - (2 * pi * start) / len(seq)
r2 = r1 - gc * zoom
x1 = X0 + r1 * sin(alpha)
y1 = Y0 + r1 * cos(alpha)
x2 = X0 + r2 * sin(alpha)
y2 = Y0 + r2 * cos(alpha)
canvas.create_line(x1, y1, x2, y2, fill='blue')
# accumulated GC skew
r1 = r - 50
r2 = r1 - acc
x1 = X0 + r1 * sin(alpha)
y1 = Y0 + r1 * cos(alpha)
x2 = X0 + r2 * sin(alpha)
y2 = Y0 + r2 * cos(alpha)
canvas.create_line(x1, y1, x2, y2, fill='magenta')
canvas.update()
start += window
canvas.configure(scrollregion=canvas.bbox(tkinter.ALL))
def nt_search(seq, subseq):
"""Search for a DNA subseq in sequence.
use ambiguous values (like N = A or T or C or G, R = A or G etc.)
searches only on forward strand
"""
pattern = ''
for nt in subseq:
value = IUPACData.ambiguous_dna_values[nt]
if len(value) == 1:
pattern += value
else:
pattern += '[%s]' % value
pos = -1
result = [pattern]
l = len(seq)
while True:
pos += 1
s = seq[pos:]
m = re.search(pattern, s)
if not m:
break
pos += int(m.start(0))
result.append(pos)
return result
# }}}
######################################
# Protein
######################
# {{{
def seq3(seq, custom_map=None, undef_code='Xaa'):
"""Turn a one letter code protein sequence into one with three letter codes.
The single required input argument 'seq' should be a protein sequence using
single letter codes, either as a python string or as a Seq or MutableSeq
object.
This function returns the amino acid sequence as a string using the three
letter amino acid codes. Output follows the IUPAC standard (including
ambiguous characters B for "Asx", J for "Xle" and X for "Xaa", and also U
for "Sel" and O for "Pyl") plus "Ter" for a terminator given as an asterisk.
Any unknown character (including possible gap characters), is changed into
'Xaa' by default.
e.g.
>>> from Bio.SeqUtils import seq3
>>> seq3("MAIVMGRWKGAR*")
'MetAlaIleValMetGlyArgTrpLysGlyAlaArgTer'
You can set a custom translation of the codon termination code using the
dictionary "custom_map" argument (which defaults to {'*': 'Ter'}), e.g.
>>> seq3("MAIVMGRWKGAR*", custom_map={"*": "***"})
'MetAlaIleValMetGlyArgTrpLysGlyAlaArg***'
You can also set a custom translation for non-amino acid characters, such
as '-', using the "undef_code" argument, e.g.
>>> seq3("MAIVMGRWKGA--R*", undef_code='---')
'MetAlaIleValMetGlyArgTrpLysGlyAla------ArgTer'
If not given, "undef_code" defaults to "Xaa", e.g.
>>> seq3("MAIVMGRWKGA--R*")
'MetAlaIleValMetGlyArgTrpLysGlyAlaXaaXaaArgTer'
This function was inspired by BioPerl's seq3.
"""
if custom_map is None:
custom_map = {'*': 'Ter'}
# not doing .update() on IUPACData dict with custom_map dict
# to preserve its initial state (may be imported in other modules)
threecode = dict(list(IUPACData.protein_letters_1to3_extended.items()) +
list(custom_map.items()))
# We use a default of 'Xaa' for undefined letters
# Note this will map '-' to 'Xaa' which may be undesirable!
return ''.join(threecode.get(aa, undef_code) for aa in seq)
def seq1(seq, custom_map=None, undef_code='X'):
"""Turns a three-letter code protein sequence into one with single letter codes.
The single required input argument 'seq' should be a protein sequence
using three-letter codes, either as a python string or as a Seq or
MutableSeq object.
This function returns the amino acid sequence as a string using the one
letter amino acid codes. Output follows the IUPAC standard (including
ambiguous characters "B" for "Asx", "J" for "Xle", "X" for "Xaa", "U" for
"Sel", and "O" for "Pyl") plus "*" for a terminator given the "Ter" code.
Any unknown character (including possible gap characters), is changed
into '-' by default.
e.g.
>>> from Bio.SeqUtils import seq3
>>> seq1("MetAlaIleValMetGlyArgTrpLysGlyAlaArgTer")
'MAIVMGRWKGAR*'
The input is case insensitive, e.g.
>>> from Bio.SeqUtils import seq3
>>> seq1("METalaIlEValMetGLYArgtRplysGlyAlaARGTer")
'MAIVMGRWKGAR*'
You can set a custom translation of the codon termination code using the
dictionary "custom_map" argument (defaulting to {'Ter': '*'}), e.g.
>>> seq1("MetAlaIleValMetGlyArgTrpLysGlyAlaArg***", custom_map={"***": "*"})
'MAIVMGRWKGAR*'
You can also set a custom translation for non-amino acid characters, such
as '-', using the "undef_code" argument, e.g.
>>> seq1("MetAlaIleValMetGlyArgTrpLysGlyAla------ArgTer", undef_code='?')
'MAIVMGRWKGA??R*'
If not given, "undef_code" defaults to "X", e.g.
>>> seq1("MetAlaIleValMetGlyArgTrpLysGlyAla------ArgTer")
'MAIVMGRWKGAXXR*'
"""
if custom_map is None:
custom_map = {'Ter': '*'}
# reverse map of threecode
# upper() on all keys to enable caps-insensitive input seq handling
onecode = dict((k.upper(), v) for k, v in
IUPACData.protein_letters_3to1_extended.items())
# add the given termination codon code and custom maps
onecode.update((k.upper(), v) for (k, v) in custom_map.items())
seqlist = [seq[3 * i:3 * (i + 1)] for i in range(len(seq) // 3)]
return ''.join(onecode.get(aa.upper(), undef_code) for aa in seqlist)
# }}}
######################################
# Mixed ???
######################
# {{{
def molecular_weight(seq, seq_type=None, double_stranded=False, circular=False,
monoisotopic=False):
"""Calculates the molecular weight of a DNA, RNA or protein sequence.
Only unambiguous letters are allowed. Nucleotide sequences are assumed to
have a 5' phosphate.
- seq: String or Biopython sequence object.
- seq_type: The default (None) is to take the alphabet from the seq argument,
or assume DNA if the seq argument is a string. Override this with
a string 'DNA', 'RNA', or 'protein'.
- double_stranded: Calculate the mass for the double stranded molecule?
- circular: Is the molecule circular (has no ends)?
- monoisotopic: Use the monoisotopic mass tables?
Note that for backwards compatibility, if the seq argument is a string,
or Seq object with a generic alphabet, and no seq_type is specified
(i.e. left as None), then DNA is assumed.
>>> print("%0.2f" % molecular_weight("AGC"))
949.61
>>> print("%0.2f" % molecular_weight(Seq("AGC")))
949.61
However, it is better to be explicit - for example with strings:
>>> print("%0.2f" % molecular_weight("AGC", "DNA"))
949.61
>>> print("%0.2f" % molecular_weight("AGC", "RNA"))
997.61
>>> print("%0.2f" % molecular_weight("AGC", "protein"))
249.29
Or, with the sequence alphabet:
>>> from Bio.Seq import Seq
>>> from Bio.Alphabet import generic_dna, generic_rna, generic_protein
>>> print("%0.2f" % molecular_weight(Seq("AGC", generic_dna)))
949.61
>>> print("%0.2f" % molecular_weight(Seq("AGC", generic_rna)))
997.61
>>> print("%0.2f" % molecular_weight(Seq("AGC", generic_protein)))
249.29
Also note that contradictory sequence alphabets and seq_type will also
give an exception:
>>> from Bio.Seq import Seq
>>> from Bio.Alphabet import generic_dna
>>> print("%0.2f" % molecular_weight(Seq("AGC", generic_dna), "RNA"))
Traceback (most recent call last):
...
ValueError: seq_type='RNA' contradicts DNA from seq alphabet
"""
# Rewritten by Markus Piotrowski, 2014
# Find the alphabet type
tmp_type = ''
if isinstance(seq, (Seq, MutableSeq)):
base_alphabet = Alphabet._get_base_alphabet(seq.alphabet)
if isinstance(base_alphabet, Alphabet.DNAAlphabet):
tmp_type = 'DNA'
elif isinstance(base_alphabet, Alphabet.RNAAlphabet):
tmp_type = 'RNA'
elif isinstance(base_alphabet, Alphabet.ProteinAlphabet):
tmp_type = 'protein'
elif isinstance(base_alphabet, Alphabet.ThreeLetterProtein):
tmp_type = 'protein'
# Convert to one-letter sequence. Have to use a string for seq1
seq = Seq(seq1(str(seq)), alphabet=Alphabet.ProteinAlphabet())
elif not isinstance(base_alphabet, Alphabet.Alphabet):
raise TypeError("%s is not a valid alphabet for mass calculations"
% base_alphabet)
else:
tmp_type = "DNA" # backward compatibity
if seq_type and tmp_type and tmp_type != seq_type:
raise ValueError("seq_type=%r contradicts %s from seq alphabet"
% (seq_type, tmp_type))
seq_type = tmp_type
elif isinstance(seq, str):
if seq_type is None:
seq_type = "DNA" # backward compatibity
else:
raise TypeError("Expected a string or Seq object, not seq=%r" % seq)
seq = ''.join(str(seq).split()).upper() # Do the minimum formatting
if seq_type == 'DNA':
if monoisotopic:
weight_table = IUPACData.monoisotopic_unambiguous_dna_weights
else:
weight_table = IUPACData.unambiguous_dna_weights
elif seq_type == 'RNA':
if monoisotopic:
weight_table = IUPACData.monoisotopic_unambiguous_rna_weights
else:
weight_table = IUPACData.unambiguous_rna_weights
elif seq_type == 'protein':
if monoisotopic:
weight_table = IUPACData.monoisotopic_protein_weights
else:
weight_table = IUPACData.protein_weights
else:
raise ValueError("Allowed seq_types are DNA, RNA or protein, not %r"
% seq_type)
if monoisotopic:
water = 18.010565
else:
water = 18.0153
try:
weight = sum(weight_table[x] for x in seq) - (len(seq) - 1) * water
if circular:
weight -= water
except KeyError as e:
raise ValueError('%s is not a valid unambiguous letter for %s'
% (e, seq_type))
except:
raise
if seq_type in ('DNA', 'RNA') and double_stranded:
seq = str(Seq(seq).complement())
weight += sum(weight_table[x] for x in seq) - (len(seq) - 1) * water
if circular:
weight -= water
elif seq_type == 'protein' and double_stranded:
raise ValueError('double-stranded proteins await their discovery')
return weight
def six_frame_translations(seq, genetic_code=1):
"""Formatted string showing the 6 frame translations and GC content.
nice looking 6 frame translation with GC content - code from xbbtools
similar to DNA Striders six-frame translation
>>> from Bio.SeqUtils import six_frame_translations
>>> print(six_frame_translations("AUGGCCAUUGUAAUGGGCCGCUGA"))
GC_Frame: a:5 t:0 g:8 c:5
Sequence: auggccauug ... gggccgcuga, 24 nt, 54.17 %GC
<BLANKLINE>
<BLANKLINE>
1/1
G H C N G P L
W P L * W A A
M A I V M G R *
auggccauuguaaugggccgcuga 54 %
uaccgguaacauuacccggcgacu
A M T I P R Q
H G N Y H A A S
P W Q L P G S
<BLANKLINE>
<BLANKLINE>
""" # noqa for pep8 W291 trailing whitespace
from Bio.Seq import reverse_complement, translate
anti = reverse_complement(seq)
comp = anti[::-1]
length = len(seq)
frames = {}
for i in range(0, 3):
fragment_length = 3 * ((length - i) // 3)
frames[i + 1] = translate(seq[i:i + fragment_length], genetic_code)
frames[-(i + 1)] = translate(anti[i:i + fragment_length], genetic_code)[::-1]
# create header
if length > 20:
short = '%s ... %s' % (seq[:10], seq[-10:])
else:
short = seq
header = 'GC_Frame: '
for nt in ['a', 't', 'g', 'c']:
header += '%s:%d ' % (nt, seq.count(nt.upper()))
header += '\nSequence: %s, %d nt, %0.2f %%GC\n\n\n' % (short.lower(), length, GC(seq))
res = header
for i in range(0, length, 60):
subseq = seq[i:i + 60]
csubseq = comp[i:i + 60]
p = i // 3
res += '%d/%d\n' % (i + 1, i / 3 + 1)
res += ' ' + ' '.join(frames[3][p:p + 20]) + '\n'
res += ' ' + ' '.join(frames[2][p:p + 20]) + '\n'
res += ' '.join(frames[1][p:p + 20]) + '\n'
# seq
res += subseq.lower() + '%5d %%\n' % int(GC(subseq))
res += csubseq.lower() + '\n'
# - frames
res += ' '.join(frames[-2][p:p + 20]) + ' \n'
res += ' ' + ' '.join(frames[-1][p:p + 20]) + '\n'
res += ' ' + ' '.join(frames[-3][p:p + 20]) + '\n\n'
return res
# }}}
def _test():
"""Run the module's doctests (PRIVATE)."""
import os
import doctest
if os.path.isdir(os.path.join("..", "Tests")):
print("Running doctests...")
cur_dir = os.path.abspath(os.curdir)
os.chdir(os.path.join("..", "Tests"))
doctest.testmod()
os.chdir(cur_dir)
del cur_dir
print("Done")
elif os.path.isdir(os.path.join("Tests")):
print("Running doctests...")
cur_dir = os.path.abspath(os.curdir)
os.chdir(os.path.join("Tests"))
doctest.testmod()
os.chdir(cur_dir)
del cur_dir
print("Done")
if __name__ == "__main__":
_test()
|