1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
#include <Python.h>
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
#include "numpy/arrayobject.h"
static PyObject*
calculate(const char sequence[], int s, PyObject* matrix, npy_intp m)
{
npy_intp n = s - m + 1;
npy_intp i, j;
char c;
double score;
int ok;
PyObject* result;
PyArrayObject* array;
float* p;
npy_intp shape = (npy_intp)n;
float nan = 0.0;
nan /= nan;
if ((int)shape!=n)
{
PyErr_SetString(PyExc_ValueError, "integer overflow");
return NULL;
}
result = PyArray_SimpleNew(1, &shape, NPY_FLOAT32);
if (!result)
{
PyErr_SetString(PyExc_MemoryError, "failed to create output data");
return NULL;
}
p = PyArray_DATA((PyArrayObject*)result);
array = (PyArrayObject*)matrix;
for (i = 0; i < n; i++)
{
score = 0.0;
ok = 1;
for (j = 0; j < m; j++)
{
c = sequence[i+j];
switch (c)
{
/* Handling mixed case input here rather than converting it to
uppercase in Python code first, since doing so could use too
much memory if sequence is too long (e.g. chromosome or
plasmid). */
case 'A':
case 'a':
score += *((double*)PyArray_GETPTR2(array, j, 0)); break;
case 'C':
case 'c':
score += *((double*)PyArray_GETPTR2(array, j, 1)); break;
case 'G':
case 'g':
score += *((double*)PyArray_GETPTR2(array, j, 2)); break;
case 'T':
case 't':
score += *((double*)PyArray_GETPTR2(array, j, 3)); break;
default:
ok = 0;
}
}
if (ok) *p = (float)score;
else *p = nan;
p++;
}
return result;
}
static char calculate__doc__[] =
" calculate(sequence, pwm) -> array of score values\n"
"\n"
"This function calculates the position-weight matrix scores for all\n"
"positions along the sequence, and returns them as a Numerical Python\n"
"array.\n";
static PyObject*
py_calculate(PyObject* self, PyObject* args, PyObject* keywords)
{
const char* sequence;
PyObject* matrix = NULL;
static char* kwlist[] = {"sequence", "matrix", NULL};
npy_intp m;
int s;
PyObject* result;
PyArrayObject* array;
if(!PyArg_ParseTupleAndKeywords(args, keywords, "s#O&", kwlist,
&sequence,
&s,
PyArray_Converter,
&matrix)) return NULL;
array = (PyArrayObject*) matrix;
if (PyArray_TYPE(array) != NPY_DOUBLE)
{
PyErr_SetString(PyExc_ValueError,
"position-weight matrix should contain floating-point values");
result = NULL;
}
else if (PyArray_NDIM(array) != 2) /* Checking number of dimensions */
{
result = PyErr_Format(PyExc_ValueError,
"position-weight matrix has incorrect rank (%d expected 2)",
PyArray_NDIM(array));
}
else if(PyArray_DIM(array, 1) != 4)
{
result = PyErr_Format(PyExc_ValueError,
"position-weight matrix should have four columns (%" NPY_INTP_FMT
" columns found)", PyArray_DIM(array, 1));
}
else
{
m = PyArray_DIM(array, 0);
result = calculate(sequence, s, matrix, m);
}
Py_DECREF(matrix);
return result;
}
static struct PyMethodDef methods[] = {
{"calculate", (PyCFunction)py_calculate, METH_VARARGS | METH_KEYWORDS, calculate__doc__},
{NULL, NULL, 0, NULL} /* sentinel */
};
#if PY_MAJOR_VERSION >= 3
static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"_pwm",
"Fast calculations involving position-weight matrices",
-1,
methods,
NULL,
NULL,
NULL,
NULL
};
PyObject*
PyInit__pwm(void)
#else
void init_pwm(void)
#endif
{
PyObject *m;
import_array();
#if PY_MAJOR_VERSION >= 3
m = PyModule_Create(&moduledef);
if (m==NULL) return NULL;
#else
m = Py_InitModule4("_pwm",
methods,
"Fast calculations involving position-weight matrices",
NULL,
PYTHON_API_VERSION);
if (m==NULL) return;
#endif
if (PyErr_Occurred()) Py_FatalError("can't initialize module _pwm");
#if PY_MAJOR_VERSION >= 3
return m;
#endif
}
|