1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
#!/usr/bin/python
# Copyright (C) 2002, Thomas Hamelryck (thamelry@vub.ac.be)
# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
from optparse import OptionParser
from Bio.PDB import *
import sys
__docformat__ = "restructuredtext en"
__doc__ = """
This program calculates solvent exposure for all amino
acids in a PDB file using 5 different methods:
-DSSP (DSSP needs to be installed)
-Residue depth (MSMS needs to be installed)
-Coordination number (ie. number of CA atoms within a sphere)
-HSEalpha half sphere exposure
-HSEbeta half sphere exposure
A PDB file can be written out with the exposure in the B factor field.
See --help for all options.
"""
if len(sys.argv) == 1:
print(__doc__)
sys.exit()
# Get the user's options
parser = OptionParser(usage="usage: %prog [options] <PDB file>")
parser.add_option("-t", "--type", dest="exp",
help="exposure type (HSEAU, HSEAD, HSEBU, HSEBD,\
CN, DSSPr, DSSPa, RD, RDa)", default="HSEb")
parser.add_option("-o", "--out", dest="outfile",
help="output to PDB file (B factor=exposure)")
parser.add_option("-r", "--radius", dest="radius", type="float",
help="sphere radius (default 13.0 A)",
default=13.0)
parser.add_option("-m", "--model", dest="model", type="int",
help="model number (default 0)",
default=0)
(options, args) = parser.parse_args()
pdbfile = args[0]
# Get the structure
p = PDBParser()
s = p.get_structure('X', pdbfile)
# First model by default
m = s[options.model]
RADIUS = options.radius
# d=dictionary of exposures
# k=position in ntuple containing the desired exposure
format = "%4i"
options.exp = options.exp.upper()
if options.exp[0] == "H" and options.exp[3] == "A":
hse = HSExposureCA(m, RADIUS)
if options.exp[-1] == "D":
k = 'EXP_HSE_A_D'
else:
k = 'EXP_HSE_A_U'
elif options.exp[0] == "H" and options.exp[3] == "B":
hse = HSExposureCB(m, RADIUS)
#hse.write_pymol_script()
if options.exp[-1] == "D":
k = 'EXP_HSE_B_U'
else:
k = 'EXP_HSE_B_D'
elif options.exp == "CN":
hse = ExposureCN(m, RADIUS)
k = 'EXP_CN'
elif options.exp == "ANGLE":
hse = HSExposureCA(m, RADIUS)
k = 'EXP_CB_PCB_ANGLE'
format = "%4.1f"
elif options.exp == "DSSPR":
d = DSSP(m, pdbfile)
k = 'EXP_DSSP_RASA'
format = "%.4f"
elif options.exp == "DSSPA":
d = DSSP(m, pdbfile)
k = 'EXP_DSSP_ASA'
elif options.exp == "RD":
d = ResidueDepth(m, pdbfile)
k = 'EXP_RD'
format = "%4.1f"
elif options.exp == "RDA":
d = ResidueDepth(m, pdbfile)
k = 'EXP_RD_CA'
format = "%4.1f"
else:
print("ERROR: Unknown option.")
sys.exit()
residue_list = Selection.unfold_entities(m, 'R')
for r in residue_list:
if k in r.xtra:
exposure = r.xtra[k]
if options.exp == "DSSPR":
# to 0=exposed, 1=buried
exposure = 1 - exposure
# Print info
hetflag, resseq, icode = r.get_id()
if icode == ' ':
icode = '_'
resname = r.get_resname()
print(("%s %4i %c\t" + format) % (resname, resseq, icode, exposure))
else:
exposure = 0.0
for atom in r.get_iterator():
atom.set_bfactor(exposure)
if options.outfile:
io = PDBIO()
io.set_structure(s)
io.save(options.outfile)
|