File: __init__.py

package info (click to toggle)
python-biopython 1.68%2Bdfsg-3~bpo8%2B1
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 46,856 kB
  • sloc: python: 160,306; xml: 93,216; ansic: 9,118; sql: 1,208; makefile: 155; sh: 63
file content (648 lines) | stat: -rw-r--r-- 24,900 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
# This code is part of the Biopython distribution and governed by its
# license.  Please see the LICENSE file that should have been included
# as part of this package.
#

import numpy

from Bio.Cluster.cluster import *


def _treesort(order, nodeorder, nodecounts, tree):
    # Find the order of the nodes consistent with the hierarchical clustering
    # tree, taking into account the preferred order of nodes.
    nNodes = len(tree)
    nElements = nNodes + 1
    neworder = numpy.zeros(nElements)
    clusterids = numpy.arange(nElements)
    for i in range(nNodes):
        i1 = tree[i].left
        i2 = tree[i].right
        if i1 < 0:
            order1 = nodeorder[-i1 - 1]
            count1 = nodecounts[-i1 - 1]
        else:
            order1 = order[i1]
            count1 = 1
        if i2 < 0:
            order2 = nodeorder[-i2 - 1]
            count2 = nodecounts[-i2 - 1]
        else:
            order2 = order[i2]
            count2 = 1
        # If order1 and order2 are equal, their order is determined
        # by the order in which they were clustered
        if i1 < i2:
            if order1 < order2:
                increase = count1
            else:
                increase = count2
            for j in range(nElements):
                clusterid = clusterids[j]
                if clusterid == i1 and order1 >= order2:
                    neworder[j] += increase
                if clusterid == i2 and order1 < order2:
                    neworder[j] += increase
                if clusterid == i1 or clusterid == i2:
                    clusterids[j] = -i - 1
        else:
            if order1 <= order2:
                increase = count1
            else:
                increase = count2
            for j in range(nElements):
                clusterid = clusterids[j]
                if clusterid == i1 and order1 > order2:
                    neworder[j] += increase
                if clusterid == i2 and order1 <= order2:
                    neworder[j] += increase
                if clusterid == i1 or clusterid == i2:
                    clusterids[j] = -i - 1
    return numpy.argsort(neworder)


def _savetree(jobname, tree, order, transpose):
    # Save the hierarchical clustering solution given by the tree, following
    # the specified order, in a file whose name is based on jobname.
    if transpose == 0:
        extension = ".gtr"
        keyword = "GENE"
    else:
        extension = ".atr"
        keyword = "ARRY"
    nnodes = len(tree)
    with open(jobname + extension, "w") as outputfile:
        nodeindex = 0
        nodeID = [''] * nnodes
        nodecounts = numpy.zeros(nnodes, int)
        nodeorder = numpy.zeros(nnodes)
        nodedist = numpy.array([node.distance for node in tree])
        for nodeindex in range(nnodes):
            min1 = tree[nodeindex].left
            min2 = tree[nodeindex].right
            nodeID[nodeindex] = "NODE%dX" % (nodeindex + 1)
            outputfile.write(nodeID[nodeindex])
            outputfile.write("\t")
            if min1 < 0:
                index1 = -min1 - 1
                order1 = nodeorder[index1]
                counts1 = nodecounts[index1]
                outputfile.write(nodeID[index1] + "\t")
                nodedist[nodeindex] = max(nodedist[nodeindex], nodedist[index1])
            else:
                order1 = order[min1]
                counts1 = 1
                outputfile.write("%s%dX\t" % (keyword, min1))
            if min2 < 0:
                index2 = -min2 - 1
                order2 = nodeorder[index2]
                counts2 = nodecounts[index2]
                outputfile.write(nodeID[index2] + "\t")
                nodedist[nodeindex] = max(nodedist[nodeindex], nodedist[index2])
            else:
                order2 = order[min2]
                counts2 = 1
                outputfile.write("%s%dX\t" % (keyword, min2))
            outputfile.write(str(1.0 - nodedist[nodeindex]))
            outputfile.write("\n")
            counts = counts1 + counts2
            nodecounts[nodeindex] = counts
            nodeorder[nodeindex] = (counts1 * order1 + counts2 * order2) / counts
    # Now set up order based on the tree structure
    index = _treesort(order, nodeorder, nodecounts, tree)
    return index


class Record(object):
    """Store gene expression data.

A Record stores the gene expression data and related information contained
in a data file following the file format defined for Michael Eisen's
Cluster/TreeView program. A Record has the following members:

  - data:     a matrix containing the gene expression data
  - mask:     a matrix containing only 1's and 0's, denoting which values
    are present (1) or missing (0). If all elements of mask are
    one (no missing data), then mask is set to None.
  - geneid:   a list containing a unique identifier for each gene
    (e.g., ORF name)
  - genename: a list containing an additional description for each gene
    (e.g., gene name)
  - gweight:  the weight to be used for each gene when calculating the
    distance
  - gorder:   an array of real numbers indicating the preferred order of the
    genes in the output file
  - expid:    a list containing a unique identifier for each experimental
    condition
  - eweight:  the weight to be used for each experimental condition when
    calculating the distance
  - eorder:   an array of real numbers indication the preferred order in the
    output file of the experimental conditions
  - uniqid:   the string that was used instead of UNIQID in the input file.

"""

    def __init__(self, handle=None):
        """Read gene expression data from the file handle and return a Record.

The file should be in the format defined for Michael Eisen's
Cluster/TreeView program.

"""
        self.data = None
        self.mask = None
        self.geneid = None
        self.genename = None
        self.gweight = None
        self.gorder = None
        self.expid = None
        self.eweight = None
        self.eorder = None
        self.uniqid = None
        if not handle:
            return
        line = handle.readline().strip("\r\n").split("\t")
        n = len(line)
        self.uniqid = line[0]
        self.expid = []
        cols = {0: "GENEID"}
        for word in line[1:]:
            if word == "NAME":
                cols[line.index(word)] = word
                self.genename = []
            elif word == "GWEIGHT":
                cols[line.index(word)] = word
                self.gweight = []
            elif word == "GORDER":
                cols[line.index(word)] = word
                self.gorder = []
            else:
                self.expid.append(word)
        self.geneid = []
        self.data = []
        self.mask = []
        needmask = 0
        for line in handle:
            line = line.strip("\r\n").split("\t")
            if len(line) != n:
                raise ValueError("Line with %d columns found (expected %d)" %
                                 (len(line), n))
            if line[0] == "EWEIGHT":
                i = max(cols) + 1
                self.eweight = numpy.array(line[i:], float)
                continue
            if line[0] == "EORDER":
                i = max(cols) + 1
                self.eorder = numpy.array(line[i:], float)
                continue
            rowdata = []
            rowmask = []
            n = len(line)
            for i in range(n):
                word = line[i]
                if i in cols:
                    if cols[i] == "GENEID":
                        self.geneid.append(word)
                    if cols[i] == "NAME":
                        self.genename.append(word)
                    if cols[i] == "GWEIGHT":
                        self.gweight.append(float(word))
                    if cols[i] == "GORDER":
                        self.gorder.append(float(word))
                    continue
                if not word:
                    rowdata.append(0.0)
                    rowmask.append(0)
                    needmask = 1
                else:
                    rowdata.append(float(word))
                    rowmask.append(1)
            self.data.append(rowdata)
            self.mask.append(rowmask)
        self.data = numpy.array(self.data)
        if needmask:
            self.mask = numpy.array(self.mask, int)
        else:
            self.mask = None
        if self.gweight:
            self.gweight = numpy.array(self.gweight)
        if self.gorder:
            self.gorder = numpy.array(self.gorder)

    def treecluster(self, transpose=0, method='m', dist='e'):
        """Apply hierarchical clustering and return a Tree object.

The pairwise single, complete, centroid, and average linkage hierarchical
clustering methods are available.

- transpose: if equal to 0, genes (rows) are clustered;
  if equal to 1, microarrays (columns) are clustered.
- dist     : specifies the distance function to be used:

  - dist=='e': Euclidean distance
  - dist=='b': City Block distance
  - dist=='c': Pearson correlation
  - dist=='a': absolute value of the correlation
  - dist=='u': uncentered correlation
  - dist=='x': absolute uncentered correlation
  - dist=='s': Spearman's rank correlation
  - dist=='k': Kendall's tau

- method   : specifies which linkage method is used:

  - method=='s': Single pairwise linkage
  - method=='m': Complete (maximum) pairwise linkage (default)
  - method=='c': Centroid linkage
  - method=='a': Average pairwise linkage

See the description of the Tree class for more information about the Tree
object returned by this method.

"""
        if transpose == 0:
            weight = self.eweight
        else:
            weight = self.gweight
        return treecluster(self.data, self.mask, weight, transpose, method,
                           dist)

    def kcluster(self, nclusters=2, transpose=0, npass=1, method='a', dist='e',
                 initialid=None):
        """Apply k-means or k-median clustering.

This method returns a tuple (clusterid, error, nfound).

  - nclusters: number of clusters (the 'k' in k-means)
  - transpose: if equal to 0, genes (rows) are clustered;
    if equal to 1, microarrays (columns) are clustered.
  - npass    : number of times the k-means clustering algorithm is
    performed, each time with a different (random) initial
    condition.
  - method   : specifies how the center of a cluster is found:
    method=='a': arithmetic mean
    method=='m': median
  - dist     : specifies the distance function to be used:

    - dist=='e': Euclidean distance
    - dist=='b': City Block distance
    - dist=='c': Pearson correlation
    - dist=='a': absolute value of the correlation
    - dist=='u': uncentered correlation
    - dist=='x': absolute uncentered correlation
    - dist=='s': Spearman's rank correlation
    - dist=='k': Kendall's tau

  - initialid: the initial clustering from which the algorithm should start.
    If initialid is None, the routine carries out npass
    repetitions of the EM algorithm, each time starting from a
    different random initial clustering. If initialid is given,
    the routine carries out the EM algorithm only once, starting
    from the given initial clustering and without randomizing the
    order in which items are assigned to clusters (i.e., using
    the same order as in the data matrix). In that case, the
    k-means algorithm is fully deterministic.

Return values:
  - clusterid: array containing the number of the cluster to which each
    gene/microarray was assigned in the best k-means clustering
    solution that was found in the npass runs;
  - error:     the within-cluster sum of distances for the returned k-means
    clustering solution;
  - nfound:    the number of times this solution was found.

"""

        if transpose == 0:
            weight = self.eweight
        else:
            weight = self.gweight
        return kcluster(self.data, nclusters, self.mask, weight, transpose,
                        npass, method, dist, initialid)

    def somcluster(self, transpose=0, nxgrid=2, nygrid=1, inittau=0.02,
                   niter=1, dist='e'):
        """Calculate a self-organizing map on a rectangular grid.

The somcluster method returns a tuple (clusterid, celldata).

  - transpose: if equal to 0, genes (rows) are clustered;
    if equal to 1, microarrays (columns) are clustered.
  - nxgrid   : the horizontal dimension of the rectangular SOM map
  - nygrid   : the vertical dimension of the rectangular SOM map
  - inittau  : the initial value of tau (the neighborbood function)
  - niter    : the number of iterations
  - dist     : specifies the distance function to be used:

    - dist=='e': Euclidean distance
    - dist=='b': City Block distance
    - dist=='c': Pearson correlation
    - dist=='a': absolute value of the correlation
    - dist=='u': uncentered correlation
    - dist=='x': absolute uncentered correlation
    - dist=='s': Spearman's rank correlation
    - dist=='k': Kendall's tau

Return values:

    - clusterid: array with two columns, while the number of rows is equal to
      the number of genes or the number of microarrays depending on
      whether genes or microarrays are being clustered. Each row in
      the array contains the x and y coordinates of the cell in the
      rectangular SOM grid to which the gene or microarray was
      assigned.
    - celldata:  an array with dimensions (nxgrid, nygrid, number of
      microarrays) if genes are being clustered, or (nxgrid,
      nygrid, number of genes) if microarrays are being clustered.
      Each element [ix][iy] of this array is a 1D vector containing
      the gene expression data for the centroid of the cluster in
      the SOM grid cell with coordinates (ix, iy).

"""

        if transpose == 0:
            weight = self.eweight
        else:
            weight = self.gweight
        return somcluster(self.data, self.mask, weight, transpose,
                          nxgrid, nygrid, inittau, niter, dist)

    def clustercentroids(self, clusterid=None, method='a', transpose=0):
        """Calculate the cluster centroids and return a tuple (cdata, cmask).

The centroid is defined as either the mean or the median over all elements
for each dimension.

  - data     : nrows x ncolumns array containing the expression data
  - mask     : nrows x ncolumns array of integers, showing which data are
    missing. If mask[i][j]==0, then data[i][j] is missing.
  - transpose: if equal to 0, gene (row) clusters are considered;
    if equal to 1, microarray (column) clusters are considered.
  - clusterid: array containing the cluster number for each gene or
    microarray. The cluster number should be non-negative.
  - method   : specifies how the centroid is calculated:
    method=='a': arithmetic mean over each dimension. (default)
    method=='m': median over each dimension.

Return values:
  - cdata    : 2D array containing the cluster centroids. If transpose==0,
    then the dimensions of cdata are nclusters x ncolumns. If
    transpose==1, then the dimensions of cdata are
    nrows x nclusters.
  - cmask    : 2D array of integers describing which elements in cdata,
    if any, are missing.

"""
        return clustercentroids(self.data, self.mask, clusterid, method,
                                transpose)

    def clusterdistance(self, index1=0, index2=0, method='a', dist='e',
                        transpose=0):
        """Calculate the distance between two clusters.

  - index1   : 1D array identifying which genes/microarrays belong to the
    first cluster. If the cluster contains only one gene, then
    index1 can also be written as a single integer.
  - index2   : 1D array identifying which genes/microarrays belong to the
    second cluster. If the cluster contains only one gene, then
    index2 can also be written as a single integer.
  - transpose: if equal to 0, genes (rows) are clustered;
    if equal to 1, microarrays (columns) are clustered.
  - dist     : specifies the distance function to be used:

    - dist=='e': Euclidean distance
    - dist=='b': City Block distance
    - dist=='c': Pearson correlation
    - dist=='a': absolute value of the correlation
    - dist=='u': uncentered correlation
    - dist=='x': absolute uncentered correlation
    - dist=='s': Spearman's rank correlation
    - dist=='k': Kendall's tau

  - method   : specifies how the distance between two clusters is defined:

    - method=='a': the distance between the arithmetic means of the
      two clusters
    - method=='m': the distance between the medians of the two
      clusters
    - method=='s': the smallest pairwise distance between members
      of the two clusters
    - method=='x': the largest pairwise distance between members of
      the two clusters
    - method=='v': average of the pairwise distances between
      members of the clusters

  - transpose: if equal to 0: clusters of genes (rows) are considered;
    if equal to 1: clusters of microarrays (columns) are considered.

"""

        if transpose == 0:
            weight = self.eweight
        else:
            weight = self.gweight
        return clusterdistance(self.data, self.mask, weight,
                               index1, index2, method, dist, transpose)

    def distancematrix(self, transpose=0, dist='e'):
        """Calculate the distance matrix and return it as a list of arrays

  - transpose: if equal to 0: calculate the distances between genes (rows);
    if equal to 1: calculate the distances beteeen microarrays
    (columns).
  - dist     : specifies the distance function to be used:

    - dist=='e': Euclidean distance
    - dist=='b': City Block distance
    - dist=='c': Pearson correlation
    - dist=='a': absolute value of the correlation
    - dist=='u': uncentered correlation
    - dist=='x': absolute uncentered correlation
    - dist=='s': Spearman's rank correlation
    - dist=='k': Kendall's tau

Return value:
The distance matrix is returned as a list of 1D arrays containing the
distance matrix between the gene expression data. The number of columns
in each row is equal to the row number. Hence, the first row has zero
elements. An example of the return value is::

  matrix = [[],
            array([1.]),
            array([7., 3.]),
            array([4., 2., 6.])]

This corresponds to the distance matrix::

  [0., 1., 7., 4.]
  [1., 0., 3., 2.]
  [7., 3., 0., 6.]
  [4., 2., 6., 0.]

"""
        if transpose == 0:
            weight = self.eweight
        else:
            weight = self.gweight
        return distancematrix(self.data, self.mask, weight, transpose, dist)

    def save(self, jobname, geneclusters=None, expclusters=None):
        """Save the clustering results.

The saved files follow the convention for the Java TreeView program,
which can therefore be used to view the clustering result.

Arguments:

  - jobname:   The base name of the files to be saved. The filenames are
    jobname.cdt, jobname.gtr, and jobname.atr for
    hierarchical clustering, and jobname-K*.cdt,
    jobname-K*.kgg, jobname-K*.kag for k-means clustering
    results.
  - geneclusters=None:  For hierarchical clustering results, geneclusters
    is a Tree object as returned by the treecluster method.
    For k-means clustering results, geneclusters is a vector
    containing ngenes integers, describing to which cluster a
    given gene belongs. This vector can be calculated by
    kcluster.
  - expclusters=None:  For hierarchical clustering results, expclusters
    is a Tree object as returned by the treecluster method.
    For k-means clustering results, expclusters is a vector
    containing nexps integers, describing to which cluster a
    given experimental condition belongs. This vector can be
    calculated by kcluster.

"""
        (ngenes, nexps) = numpy.shape(self.data)
        if self.gorder is None:
            gorder = numpy.arange(ngenes)
        else:
            gorder = self.gorder
        if self.eorder is None:
            eorder = numpy.arange(nexps)
        else:
            eorder = self.eorder
        if geneclusters is not None and expclusters is not None and \
           type(geneclusters) != type(expclusters):
            raise ValueError("found one k-means and one hierarchical "
                             "clustering solution in geneclusters and "
                             "expclusters")
        gid = 0
        aid = 0
        filename = jobname
        postfix = ""
        if isinstance(geneclusters, Tree):
            # This is a hierarchical clustering result.
            geneindex = _savetree(jobname, geneclusters, gorder, 0)
            gid = 1
        elif geneclusters is not None:
            # This is a k-means clustering result.
            filename = jobname + "_K"
            k = max(geneclusters) + 1
            kggfilename = "%s_K_G%d.kgg" % (jobname, k)
            geneindex = self._savekmeans(kggfilename, geneclusters, gorder, 0)
            postfix = "_G%d" % k
        else:
            geneindex = numpy.argsort(gorder)
        if isinstance(expclusters, Tree):
            # This is a hierarchical clustering result.
            expindex = _savetree(jobname, expclusters, eorder, 1)
            aid = 1
        elif expclusters is not None:
            # This is a k-means clustering result.
            filename = jobname + "_K"
            k = max(expclusters) + 1
            kagfilename = "%s_K_A%d.kag" % (jobname, k)
            expindex = self._savekmeans(kagfilename, expclusters, eorder, 1)
            postfix += "_A%d" % k
        else:
            expindex = numpy.argsort(eorder)
        filename = filename + postfix
        self._savedata(filename, gid, aid, geneindex, expindex)

    def _savekmeans(self, filename, clusterids, order, transpose):
        # Save a k-means clustering solution
        if transpose == 0:
            label = self.uniqid
            names = self.geneid
        else:
            label = "ARRAY"
            names = self.expid
        with open(filename, "w") as outputfile:
            outputfile.write(label + "\tGROUP\n")
            index = numpy.argsort(order)
            n = len(names)
            sortedindex = numpy.zeros(n, int)
            counter = 0
            cluster = 0
            while counter < n:
                for j in index:
                    if clusterids[j] == cluster:
                        outputfile.write("%s\t%s\n" % (names[j], cluster))
                        sortedindex[counter] = j
                        counter += 1
                cluster += 1
        return sortedindex

    def _savedata(self, jobname, gid, aid, geneindex, expindex):
        # Save the clustered data.
        if self.genename is None:
            genename = self.geneid
        else:
            genename = self.genename
        (ngenes, nexps) = numpy.shape(self.data)
        with open(jobname + '.cdt', 'w') as outputfile:
            if self.mask is not None:
                mask = self.mask
            else:
                mask = numpy.ones((ngenes, nexps), int)
            if self.gweight is not None:
                gweight = self.gweight
            else:
                gweight = numpy.ones(ngenes)
            if self.eweight is not None:
                eweight = self.eweight
            else:
                eweight = numpy.ones(nexps)
            if gid:
                outputfile.write('GID\t')
            outputfile.write(self.uniqid)
            outputfile.write('\tNAME\tGWEIGHT')
            # Now add headers for data columns.
            for j in expindex:
                outputfile.write('\t%s' % self.expid[j])
            outputfile.write('\n')
            if aid:
                outputfile.write("AID")
                if gid:
                    outputfile.write('\t')
                outputfile.write("\t\t")
                for j in expindex:
                    outputfile.write('\tARRY%dX' % j)
                outputfile.write('\n')
            outputfile.write('EWEIGHT')
            if gid:
                outputfile.write('\t')
            outputfile.write('\t\t')
            for j in expindex:
                outputfile.write('\t%f' % eweight[j])
            outputfile.write('\n')
            for i in geneindex:
                if gid:
                    outputfile.write('GENE%dX\t' % i)
                outputfile.write("%s\t%s\t%f" %
                                 (self.geneid[i], genename[i], gweight[i]))
                for j in expindex:
                    outputfile.write('\t')
                    if mask[i, j]:
                        outputfile.write(str(self.data[i, j]))
                outputfile.write('\n')


def read(handle):
    """Read gene expression data from the file handle and return a Record.

The file should be in the file format defined for Michael Eisen's
Cluster/TreeView program.

"""
    return Record(handle)